TD-SCDMA, incl TD-SCDMA enhanced features
Digital Standard for
R&S® Signal Generators
Operating Manual
This document describes the following software options:

- **R&S®AMU-K50/-K51**
 1402.8950.02, 1402.9005.02

- **R&S®SMATE-K50/-K51**
 1404.7100.02, 1404.7200.02

- **R&S®SMBV-K50/-K51**
 1415.8125.xx, 1415.8131.xx

- **R&S®SMJ-K50/-K51**
 1404.1660.02, 1404.1760.02

- **R&S®SMU-K50/-K51**
 1161.0966.02, 1161.1062.02

This manual version corresponds to firmware version:

- FW 3.20.281.xx and later of the R&S®SMBV100A
- FW 2.20.360.142 and later of the R&S®SMU200A, R&S®SMATE200A, R&S®SMJ100A and R&S®AMU200A
Contents

1 Preface ... 7
 1.1 Documentation Overview ... 7
1.2 Conventions Used in the Documentation .. 8
 1.2.1 Typographical Conventions ... 8
 1.2.2 Notes on Screenshots ... 9
 1.2.3 Naming of Software Options ... 9
2 Introduction .. 10
3 Modulation System .. 12
 3.1 TD-SCDMA Signal Structure (Frames and Time Slots) 12
 3.2 DwPTS and UpPTS ... 12
 3.3 Structure of Traffic Burst ... 13
 3.3.1 Burst Without Layer 1 Control Information .. 13
 3.3.2 Burst With Layer 1 Control Information .. 14
4 TD-SCDMA User Interface .. 16
 4.1 General Settings for TD-SCDMA Signals ... 16
 4.2 Filter / Clipping / ARB Settings ... 24
 4.2.1 Filter Settings .. 24
 4.2.2 Clipping Settings .. 25
 4.2.3 ARB Settings ... 27
 4.3 Power Ramping ... 28
 4.4 Trigger/Marker/Clock Settings .. 29
 4.4.1 Trigger In ... 30
 4.4.2 Marker Mode ... 34
 4.4.3 Marker Delay ... 35
 4.4.4 Clock Settings ... 35
 4.4.5 Global Settings ... 37
 4.5 Predefined Settings ... 37
 4.6 Cell Configuration .. 39
 4.6.1 Common Settings ... 39
 4.6.2 Slots .. 41
4.7 Enhanced Channels Settings
4.7.1 Broadcast Channels (BCH) Common Settings
4.7.2 Broadcast Channels (BCH) Details Settings
4.7.3 Dedicated Channels (DCH) Common Settings
4.7.4 Dedicated Channels (DCH) Details Settings
4.7.5 Transport Channel
4.7.6 RMC PLCCH Channel Settings
4.7.7 RMC HS-SICH Channel Settings
4.7.8 Bit Error Insertion
4.7.9 Block Error Insertion
4.8 HSDPA/HSUPA Settings
4.8.1 HSDPA Settings
4.8.2 HSUPA Settings
4.8.3 HS-SCCH Settings (HSDPA)
4.8.4 Global Settings
4.8.5 Coding Configuration
4.8.6 Signal Structure
4.8.7 HARQ Setup
4.9 Slot Configuration
4.9.1 Common Settings
4.9.2 Channel Table
4.10 DPCCH Settings
4.10.1 Slot Structure and Slot Format
4.10.2 TFCI Settings
4.10.3 Sync Shift Settings
4.10.4 E-UCCH Settings
4.10.5 TPC Settings
4.11 Slot Mode PRACH Settings
4.11.1 Common Settings
4.11.2 UpPTS Settings
4.11.3 RACH Message Part Settings
4.12 Code Domain
4.13 Channel Graph
5 Remote-Control Commands... 84
 5.1 General Commands.. 85
 5.2 Filter/Clipping/ARB Settings... 93
 5.3 Trigger Settings.. 97
 5.4 Marker Settings... 103
 5.5 Clock Settings.. 107
 5.6 Predefined Settings... 110
 5.7 Cell Settings.. 111
 5.8 Enhanced Channels of Cell 1.. 116
 5.9 Channel Settings... 134
 5.10 HSDPA/HSUPA Settings.. 153

List of Commands... 166

Index... 171
1 Preface

1.1 Documentation Overview

The user documentation for the R&S Signal Generator consists of the following parts:

- Online Help system on the instrument,
- "Quick Start Guide" printed manual,
- Documentation CD-ROM with:
 - Online help system (*.chm) as a standalone help,
 - Operating Manuals for base unit and options,
 - Service Manual,
 - Data sheet and specifications,
 - Links to useful sites on the R&S internet.

Online Help

The Online Help is embedded in the instrument's firmware. It offers quick, context-sensitive access to the complete information needed for operation and programming. The online help contains help on operating the R&S Signal Generator and all available options.

Quick Start Guide

The Quick Start Guide is delivered with the instrument in printed form and in PDF format on the Documentation CD-ROM. It provides the information needed to set up and start working with the instrument. Basic operations and an example of setup are described. The manual includes also general information, e.g., Safety Instructions.

Operating Manuals

The Operating Manuals are a supplement to the Quick Start Guide. Operating Manuals are provided for the base unit and each additional (software) option.

These manuals are available in PDF format - in printable form - on the Documentation CD-ROM delivered with the instrument. In the Operating Manual for the base unit, all instrument functions are described in detail. Furthermore, it provides an introduction to remote control and a complete description of the remote control commands with programming examples. Information on maintenance, instrument interfaces and error messages is also given.

In the individual option manuals, the specific functions of the option are described in detail. For additional information on default settings and parameters, refer to the data sheets. Basic information on operating the R&S Signal Generator is not included in the option manuals.
Service Manual

The Service Manual is available in PDF format - in printable form - on the Documentation CD-ROM delivered with the instrument. It describes how to check compliance with rated specifications, on instrument function, repair, troubleshooting and fault elimination. It contains all information required for repairing the instrument by the replacement of modules.

This manual can also be ordered in printed form (see ordering information in the data sheet).

Release Notes

The release notes describe new and modified functions, eliminated problems, and last minute changes to the documentation. The corresponding firmware version is indicated on the title page of the release notes. The current release notes are provided in the Internet.

Web Help

The web help provides online access to the complete information on operating the R&S Signal Generator and all available options, without downloading. The content of the web help corresponds to the user manuals for the latest product version.

The web help is available on the R&S Signal Generator product page at the Downloads > Web Help area.

Application Notes

Application notes, application cards, white papers and educational notes are further publications that provide more comprehensive descriptions and background information.

The latest versions are available for download from the Rohde & Schwarz website, at http://www.rohde-schwarz.com/appnotes.

1.2 Conventions Used in the Documentation

1.2.1 Typographical Conventions

The following text markers are used throughout this documentation:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Graphical user interface elements"</td>
<td>All names of graphical user interface elements on the screen, such as dialog boxes, menus, options, buttons, and softkeys are enclosed by quotation marks.</td>
</tr>
<tr>
<td>KEYS</td>
<td>Key names are written in capital letters.</td>
</tr>
</tbody>
</table>
1.2.2 Notes on Screenshots

When describing the functions of the product, we use sample screenshots. These screenshots are meant to illustrate as much as possible of the provided functions and possible interdependencies between parameters. The shown values may not represent realistic test situations.

The screenshots usually show a fully equipped product, that is: with all options installed. Thus, some functions shown in the screenshots may not be available in your particular product configuration.

1.2.3 Naming of Software Options

In this operating manual, we explicitly refer to options required for specific functions of the digital standard.

The name of software options for signal generators vary in the name of the instrument, but the option name is identical. Therefore we use in this manual the placeholder R&S SMx/AMU.

Example:

Naming for an option of the vector signal generator R&S SMBV100A, e.g:

- R&S SMx/AMU-K99, stands for R&S SMBV-K99

The particular software options available for the corresponding instruments are listed on the back of the title page.
2 Introduction

TD-SCDMA (3GPP TDD LCR) designates a mobile radio transmission method developed for 3G mobile communication by the China Wireless Telecommunication Standard group (CWTS). This standard is similar to the 3GPP TDD proposition, but with greater emphasis placed on GSM compatibility and with a chip rate limited to 1.28 Mcps. TD-SCDMA is one option of UTRA-TDD, called 1.28Mcps TDD or low chip rate (LCR) TDD.

Option TD-SCDMA (3GPP TDD LCR) enhanced MS/BS tests incl. HSDPA extends the TD-SCDMA signal generation with simulation of high speed channels in the downlink (HS-SCCH, HS-SCCH, HS-PDSCH) and the uplink (HS-SICH) and with channel coding for BCH in real time and a reference measurement channel. HSDPA (high speed downlink packet access) mode enhances the TD:SCDMA standard by data channels with high data rates especially for multi media applications.

TD-SCDMA is a mobile radio standard in which available bandwidth is divided among subscribers according to frequency (FDMA), time (TDMA) and code (CDMA). The same frequency is used for both directions of transmission (TDD). Each resource (i.e. a combination of frequency, code and time slot) can be used simultaneously by several base stations or user equipments provided the scrambling codes differ. A cell is understood to be a base station and all user equipments communicating with this base station. The R&S Signal Generator simulates a maximum of four cells at the same frequency. The Multi Carrier Mode can be used to simulate more than four cells at the same frequency or cells at several frequencies.

The TD-SCDMA signals are generated in a combination of realtime mode (real time channels) and arbitrary waveform mode. Simulation of bit and block errors can be activated for the channels generated in realtime. In arbitrary waveform mode, the signal is first calculated and then output.

The R&S Signal Generator simulates TD-SCDMA at the physical channel layer.

The following list gives an overview of the options provided by the R&S Signal Generator for generating a TD-SCDMA signal:

- Configuration of up to four TD-SCDMA cells with variable switching point of uplink and downlink.
- Freely configurable channel table for each slot and simulation of the downlink and uplink pilot time slot.
- Real time generation of one traffic channel and the SYNC channel on the downlink
- Slot modes "Dedicated" and "PRACH" on the uplink.
- Clipping for reducing the crest factor

To playback a signal from a waveform file created by the simulation software R&S WinIQSIM2, the corresponding R&S WinIQSIM2 digital standard option must be installed.
Table 2-1: Parameters of the modulation system TD-SCDMA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip rate</td>
<td>1.28 Mcps</td>
</tr>
<tr>
<td>Carrier spacing</td>
<td>1.6 MHz</td>
</tr>
<tr>
<td>Data modulation</td>
<td>QPSK</td>
</tr>
<tr>
<td>Filter</td>
<td>Root-raised cosine (0.22)</td>
</tr>
<tr>
<td>Downlink:</td>
<td>Primary Common Control Physical Channel (P-CCPCH)</td>
</tr>
<tr>
<td></td>
<td>Secondary Common Control Physical Channel (S-CCPCH)</td>
</tr>
<tr>
<td></td>
<td>Physical Forward Access Channel (F-FACH)</td>
</tr>
<tr>
<td></td>
<td>Downlink Pilot Time Slot (DwPTS)</td>
</tr>
<tr>
<td></td>
<td>Dedicated Physical Channel (DPCH)</td>
</tr>
<tr>
<td>Uplink:</td>
<td>Physical Random Access Channel (P-RACH)</td>
</tr>
<tr>
<td></td>
<td>Uplink Pilot Time Slot (UpPTS)</td>
</tr>
<tr>
<td></td>
<td>Dedicated Physical Channel (DPCH)</td>
</tr>
<tr>
<td>Data rates</td>
<td>17.6 kbps, 35.2 kbps, 70.4 kbps to 281.6 kbps depending on channel type</td>
</tr>
<tr>
<td>Number of channels</td>
<td>4 cells, each containing max. 7 active slots. Each slot with up to 16 DPCHs and 5 special channels.</td>
</tr>
<tr>
<td>Frame structure</td>
<td>Frame: 5 ms with 7 (traffic) time slots.</td>
</tr>
<tr>
<td></td>
<td>Time slot (traffic): 675 µs</td>
</tr>
<tr>
<td></td>
<td>Time slot (DwPTS): 75 µs</td>
</tr>
<tr>
<td></td>
<td>Time slot (UpPTS): 125 µs</td>
</tr>
<tr>
<td></td>
<td>The number of symbols transmitted in a slot depends on the symbol rate.</td>
</tr>
<tr>
<td>Scrambling code</td>
<td>128 different codes with length of 16 chips</td>
</tr>
<tr>
<td>SYNC codes</td>
<td>32 different codes with length of 64 chips</td>
</tr>
<tr>
<td>SYNC1 codes</td>
<td>256 different codes with length of 128 chips</td>
</tr>
<tr>
<td>Basic midamble codes</td>
<td>128 different codes with length of 128 chips</td>
</tr>
<tr>
<td>Spreading code</td>
<td>"Orthogonal Variable Spreading Factor Code (OVSF)"; spreading factors 1, 2, 4, 8, 16</td>
</tr>
</tbody>
</table>
3 Modulation System

3.1 TD-SCDMA Signal Structure (Frames and Time Slots)

The TD-SCDMA signal is organized in frames of 5 ms length. Each frame comprises 7 traffic time slots (Ts0 to Ts6, each 0.675 ms) and two special time slots (DwPTS and UpPTS) for synchronization.

![Fig. 3-1: Structure of TDSCDMA frame](image)

Ts0 is always allocated to the downlink, Ts1 to the uplink. The other time slots are divided between the two directions of transmission, the switching point being variable.

3.2 DwPTS and UpPTS

In the downlink pilot time slot (DwPTS), the base station sends one of 32 possible 64-chip SYNC codes. The SYNC code allows the user equipment to synchronize to the base station. At the same time, the SYNC code defines the value range for the scrambling code and the basic midamble code.

![Fig. 3-2: Structure of DwPTS](image)

The real-valued SYNC sequence is converted into a complex-valued SYNC sequence by a rotating-vector operation.

This SYNC sequence is divided up into four symbols with 16 chips each. The symbols are phase-modulated (possible phases are 45°, 135°, 225° and 315°) in order to signal the frame number of the interleaver.

In the supplied software, all symbols are modulated with 45°.

The uplink pilot time slot (UpPTS) is sent by the user equipment to initiate a call with the base station (before a P-RACH is sent, for example). The transmitted SYNC1 code
is randomly selected from eight possible codes. If the base station does not respond to the UpPTS, the UpPTS is repeated in the next frame.

![Fig. 3-3: Structure of UpPTS](image)

The UpPTS is a complex-valued signal resulting from the real SYNC1 sequence by a rotating-vector operation.

3.3 Structure of Traffic Burst

In time slots Ts0 to Ts6, bursts can be sent by the base station or the user equipment, i.e. in both directions of transmission. The burst structure is identical for both directions. There are two types of burst, however, which are described in the following.

![Fig. 3-4: Burst Without Layer 1 Control Information](image)

3.3.1 Burst Without Layer 1 Control Information

This type of burst can be used for all physical channels. It comprises two data fields, a midamble and a guard period.

![Fig. 3-5: Traffic burst without layer 1 control information](image)
The useful data are

- alternately fed to the I and the Q path (QPSK data modulation),
- mapped from the 0/1 plane into the –1/+1 plane,
- spread with the complex spreading code (spreading factor SF = 1, 2, 4, 8 or 16),
- scrambled with the real-valued scrambling code,
- weighted with the channel power and
- filtered (root-raised cosine 0.22)

Since each user sends only one burst per frame, the following gross data rate is obtained:

\[\text{Gross data rate} = \frac{704 \times 2}{SF \times 5 \text{ms}} = \frac{281600}{SF} \text{ kbit/s} \]

The midamble is obtained from the basic midamble by periodic repetition and shifting. For some channels, the midamble shift can be set in steps of 8 chips. The basic midamble is 128 chips long, while the length for the midamble field in the time slot is 144 chips. Each scrambling code (setting parameter at cell level) is assigned a basic midamble code.

The midamble is neither spread nor scrambled.

No signal is transmitted during the guard period. This avoids crosstalk of the burst into the next time slot at the receiver end.

3.3.2 Burst With Layer 1 Control Information

This type of burst can be used only with DPCHs (dedicated physical channels). It differs from the "normal" burst only in that the data fields are shortened ahead of and after the midamble to enable the transmission of layer 1 control information.

<table>
<thead>
<tr>
<th>Data 792</th>
<th>TFCI 2</th>
<th>Midamble 144</th>
<th>SS 2</th>
<th>TPC 2</th>
<th>TFCI 2</th>
<th>Data 698</th>
<th>Guard 16</th>
</tr>
</thead>
</table>

Fig. 3-6: Traffic burst with layer 1 control information

The burst consists of two fields of data symbols, a fixed-length 144 chip midamble, and control fields for Synchronization Shift (SS), Transmit Power Control (TPC), and Transport Format Indicator (TFCI). The timeslot is delimited by a 16-chip guard period (GP).

Each data field consists of a maximum of 352 chips.
The Transport Format Indicator field (TFCI) conveys transport format information to the receiver, which is used by the channel decoder to recover transport channels. The information is distributed into two segments in one burst (four segments in two burst = one frame).

The synchronization shift (SS) field is used to inform the other station of a shift of the burst time ("00" means that the sync shift is increased, "11" that it is decreased). The bits are transmitted in \(M \) consecutive frames. The shift value is a multiple \(k \) of \(T_{\text{chip}} / 8 \). \(M \) and \(k \) are transmitted by signaling. The value for \(M \) (Sync Shift Repetition) can be selected.

Analogously to the Sync Shift field, the power control (TPC) field is used to initiate an increase or decrease of transmit power.

If the spreading factor SF is lower than 16, the control symbols are transmitted \(16 / \text{SF} \) times. Control symbols are treated like data symbols, i.e. they are spread and scrambled.
4 TD-SCDMA User Interface

To access the dialog for setting the TD-SCDMA digital standard, select "Baseband Block > Config > TD-SCDMA" or press the MENU key and select "Baseband > TD-SCDMA". The dialog is split into several sections for configuring the standard.

The upper section of the dialog is where the TD-SCDMA digital standard is enabled, the default settings are called, and the transmission direction selected.

The valid TD-SCDMA version and the chip rate in use are displayed.

Many of the buttons lead to subdialogs for loading and saving the TD-SCDMA configuration and for setting the filter, trigger, and clock parameters.

4.1 General Settings for TD-SCDMA Signals

The upper dialog section is where the TD-SCDMA digital standard is enabled and reset and where all the settings valid for the signal in both transmission directions are made.
In the lower dialog section, the cells can be reset to the predefined settings, parameters of one cell can be copied to another cell, and the total power can be set to 0 dB. Each cell can be activated or deactivated. Active cells are highlighted blue. Clicking a cell opens the configuration dialog for setting the cell parameters.

State
Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

The TD-SCDMA signal is generated by a combination of realtime mode (enhanced channels) and arbitrary waveform mode (all the other channels).

On the downlink, one traffic channel and the SYNC channel of cell 1 are generated in realtime. All the other channels are generated in arbitrary waveform mode and added.

In the uplink, all the channels of cell 1 are generated in realtime, the other cells are generated in arbitrary waveform mode and added to the realtime signal.

Remote command:
[:SOURce<hw>]:BB:TDSdma:STATe on page 92

Set To Default
Calls the default settings. The values of the main parameters are listed in the following table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Not affected by "Set To Default"</td>
</tr>
<tr>
<td>Link Direction</td>
<td>Downlink/Forward</td>
</tr>
<tr>
<td>Filter</td>
<td>Root Cosine</td>
</tr>
<tr>
<td>Clipping</td>
<td>Off</td>
</tr>
<tr>
<td>Power ramping</td>
<td>Cosine / 2 chips</td>
</tr>
<tr>
<td>Trigger</td>
<td>Auto</td>
</tr>
</tbody>
</table>

Remote command:
[:SOURce<hw>]:BB:TDSdma:PRESet on page 90

Save/Recall...
Calls the "Save/Recall" dialog.

From the "Save/Recall" dialog, the "File Select" windows for saving and recalling TD-SCDMA configurations and the "File Manager" is called.

TD-SCDMA

TD-SCDMA configurations are stored as files with the predefined file extension *.tdscdma*. The file name and the directory they are stored in are user-definable.

The complete settings in the "TD-SCDMA" dialog are saved and recalled.
"Recall TD-SCDMA Setting"
Opens the "File Select" window for loading a saved TD-SCDMA configuration. The configuration of the selected (highlighted) file is loaded by pressing the "Select" button.

"Save TD-SCDMA Setting"
Opens the "File Select" window for saving the current TD-SCDMA signal configuration. The name of the file is specified in the "File name" entry field, the directory selected in the "save into" field. The file is saved by pressing the Save button. The "Fast Save" checkbox determines whether the instrument performs an absolute or a differential storing of the settings. Enable this function to accelerate the saving process by saving only the settings with values different to the default ones. "Fast Save" is not affected by the "Preset" function.

"File Manager"
Calls the "File Manager". The "File Manager" is used to copy, delete, and rename files and to create new directories.

Remote command:
[:SOURce<hw>]:BB:TDScdma:SETTING:CATalog? on page 90
[:SOURce<hw>]:BB:TDScdma:SETTING:LOAD on page 91
[:SOURce<hw>]:BB:TDScdma:SETTING:STORe on page 91
[:SOURce<hw>]:BB:TDScdma:SETTING:STORe:FAST on page 91

Data List Management...
Calls the "Data List Management" dialog. This dialog is used to create and edit a data list.

All data lists are stored as files with the predefined file extension *.dm_iqd. The file name and the directory they are stored in are user-definable.

The data lists must be selected as a data source from the subdialogs under the individual function, e.g. in the channel table of the cells.

Note: All data lists are generated and edited by means of the SOURce:BB:DM subsystem commands. Files containing data lists usually end with *.dm_iqd. The data lists are selected as a data source for a specific function in the individual subsystems of the digital standard.
Example: Creating and editing the data list
SOUR:BB:DM:DLIS:SEL "d_list1"
SOUR:BB:DM:DLIS:DATA #B1111010101000001111....
SOUR:BB:DM:DLIS:DATA:APP #B1111010101000001111....

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA on page 137
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA:DSELect on page 137
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TPC:DATA on page 140
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TPC:DATA:DSELect on page 140
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA on page 146
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA:DSELect on page 147

Generate Waveform File...
Calls the "Generate Waveform" dialog. This dialog is used to store the current TD-SCDMA signal as ARB signal in a waveform file.
This file can be loaded in the "ARB" dialog and processed as multicarrier or multisegment signal.
The file name is entered in the subdialog. The file is stored with the predefined file extension *.wv. The file name and the directory it is stored in are user-definable.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:WAVeform:CREate on page 93

TD-SCDMA Version
Displays the current version of the TD-SCDMA standard.
The default settings and parameters provided are oriented towards the specifications of the version displayed.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:VERSION? on page 92

Chip Rate
Displays the system chip rate. This is fixed at 1.28 Mcps.
The output chip rate can be varied in the Filter/Clipping/ARB Settings dialog (see chapter 4.2, "Filter / Clipping / ARB Settings", on page 24).

Remote command:
[:SOURce<hw>]:BB:TDSCdma:CRATe? on page 87

Link Direction
Selects the transmission direction.

The settings of the base station or the user equipment are provided in the following dialog section in accordance with the selection.

"Downlink/Forward" The transmission direction selected is base station to user equipment. The signal corresponds to that of a base station.

"Uplink/Reverse" The transmission direction selected is user equipment to base station. The signal corresponds to that of a user equipment.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:LINK on page 87

Filtering, Clipping, ARB Settings
Calls the dialog for setting baseband filtering, clipping, and the sequence length of the arbitrary waveform component. The current filter and the clipping state are displayed next to the button.

The dialog is described in chapter 4.2, "Filter / Clipping / ARB Settings", on page 24.

Remote command:
n.a.

Power Ramping...
Accesses the dialog for setting the power ramping.

The dialog is described in section chapter 4.3, "Power Ramping", on page 28.

Remote command:
n.a.

Trigger - Marker
Calls the dialog for selecting the trigger mode and trigger source, for configuring the marker signals, and for setting the time delay of an external trigger signal (see chapter 4.4, "Trigger/Marker/Clock Settings", on page 29).

The currently selected trigger mode and trigger source are displayed next to the button.

Remote command:
n.a.

Execute Trigger
Executes trigger manually.

A manual trigger can be executed only if an internal trigger source and a trigger mode other than "Auto" have been selected.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger:EXECute on page 98
Arm

Stops signal generation manually.

The "Arm" button is displayed only if the trigger modes "Armed Retrigger" or "Armed Auto" have been selected.

Remote command:

`[:SOURce<hw>]:BB:TDSCdma:TRIGger:ARM:EXECute` on page 98

Clock

Calls the dialog for selecting the clock source and for setting a delay, see chapter 4.4, "Trigger/Marker/Clock Settings", on page 29.

Remote command:

n.a.

Reset All Cells

Resets all cells to the predefined settings. The reset applies to the selected link direction. The following table gives an overview of the settings. The preset value for each parameter is specified in the description of the remote-control commands.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Cell Configuration"</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>OFF</td>
</tr>
<tr>
<td>(Use) Scrambling Code</td>
<td>ON</td>
</tr>
<tr>
<td>Scrambling Code (value)</td>
<td>0</td>
</tr>
<tr>
<td>SYNC-DL Code</td>
<td>0</td>
</tr>
<tr>
<td>SYNC-UL Code</td>
<td>0</td>
</tr>
<tr>
<td>Basic Midamble Code ID</td>
<td>0</td>
</tr>
<tr>
<td>Number of Users</td>
<td>16</td>
</tr>
<tr>
<td>Switching Point</td>
<td>3</td>
</tr>
<tr>
<td>DwPTS Power</td>
<td>0.0 dB</td>
</tr>
<tr>
<td>"Slot Configuration"</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>OFF</td>
</tr>
<tr>
<td>Slot Mode (only in uplink)</td>
<td>Dedicated</td>
</tr>
<tr>
<td>Channel Configuration</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>OFF</td>
</tr>
<tr>
<td>"Channel Type"</td>
<td>Depending on channel number</td>
</tr>
<tr>
<td>Current User</td>
<td>1</td>
</tr>
<tr>
<td>Slot Format</td>
<td>0</td>
</tr>
<tr>
<td>Spreading Factor</td>
<td>16</td>
</tr>
<tr>
<td>Spreading Code</td>
<td>0</td>
</tr>
</tbody>
</table>
General Settings for TD-SCDMA Signals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0 dB</td>
</tr>
<tr>
<td>Data Source</td>
<td>PRBS: PN9, Data Pattern: 0</td>
</tr>
<tr>
<td>Number of TFCI bits</td>
<td>0</td>
</tr>
<tr>
<td>TFCI Value</td>
<td>0</td>
</tr>
<tr>
<td>Number of Sync Shift & TPC bits</td>
<td>0 & 0</td>
</tr>
<tr>
<td>Sync Shift Pattern</td>
<td>1</td>
</tr>
<tr>
<td>Sync Shift Repetition M</td>
<td>1</td>
</tr>
<tr>
<td>TPC Source/TPC Pattern</td>
<td>01</td>
</tr>
<tr>
<td>Read Out Mode</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:RESet
```
on page 90

Copy Cell...

Copies the settings of a cell to a second cell.

![Copy Cell...](image)

*"Copy From Source"

Selects the cell whose settings are to be copied.

*"To Destination"

Selects the cell whose settings are to be overwritten.

*"Accept"

Starts the copy process.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:COPY:SOURce
```
on page 86

```
[:SOURce<hw>]:BB:TDSCdma:COPY:DESTination
```
on page 85

```
[:SOURce<hw>]:BB:TDSCdma:COPY:EXECute
```
on page 86

Predefined Settings

Access the dialog for setting predefined configurations, see chapter 4.5, "Predefined Settings", on page 37.

Remote command:

n.a.

Adjust Total Power to 0dB

Sets the power of an enabled channel so that the total power of all the active channels is 0 dB. This does not change the power ratio among the individual channels.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:POWer:ADJust
```
on page 88
Total Power
Displays the total power of the active channels for the selected link direction.

The total power is calculated from the power ratio of the powered up code channels with modulation on. If the value is not equal to 0 dB, the individual code channels (whilst still retaining the power ratios) are internally adapted so that the "Total Power" for achieving the set output level is 0 dB.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:POWer[:TOTal]? on page 88
```

Test Setups/Models
Accesses the dialog for selecting one of the test models defined in the TD-SCDMA standard and the self-defined test setups.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:SETTing:TMODEl on page 91
```

Select Cell
Selects the cell and accesses the corresponding dialog with cell related settings, see chapter 4.6, "Cell Configuration", on page 39.

Remote command:
n.a.

Cell On / Cell Off
Activates or deactivates the cells.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:STATe on page 115
```
4.2 Filter / Clipping / ARB Settings

To access this dialog, select "Main dialog > Filter/Clipping/ARB Settings".

The dialog comprises the settings, necessary to configure the baseband filter, to enable clipping and adjust the sequence length of the arbitrary waveform component.

4.2.1 Filter Settings

The upper section comprises the settings required for configuring the baseband filter.

Filter
Selects the baseband filter.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:FILTER:TYPE on page 94

Roll Off Factor or BxT
Sets the filter parameter.
The filter parameter offered ("Roll Off Factor" or "BxT") depends on the currently selected filter type. This parameter is preset to the default for each of the predefined filters.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:APCO25 on page 95
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:COSine on page 95
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:GAUSs on page 95
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:PGAuss on page 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:RCOSine on page 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:SPHase on page 97

Cut Off Frequency Factor
Sets the value for the cut off frequency factor. The cut off frequency of the filter can be adjusted to reach spectrum mask requirements.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:LPASs on page 95
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:LPASSEVM on page 96

Chip Rate Variation
Enters the chip rate.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:CRATe:VARiation on page 87

4.2.2 Clipping Settings

This section comprises the settings required for configuring the clipping.

Clipping State
Switches baseband clipping on and off.

Baseband clipping is a very simple and effective way of reducing the crest factor of the signal. Since clipping is done prior to filtering, the procedure does not influence the spectrum. The EVM however increases.

TD-SCDMA signals may have very high crest factors in particular if a large number of channels and many inactive slots are involved.

High crest factors entail two basic problems:

- The nonlinearity of the power amplifier (compression) causes intermodulation which expands the spectrum (spectral regrowth).
- Since the level in the D/A converter is relative to the maximum value, the average value is converted with a relatively low resolution. This results in a high quantization noise.

Both effects increase the adjacent-channel power.

Since clipping the signal not only changes the peak value but also the average value, the effect on the crest factor is unpredictable. The following table shows the effect of the Clipping on the crest factor for typical scenarios.
Table 4-1: Changing the crest factor by clipping (vector mode |i+q|) for signal configurations with different output crest factors. 100 % clipping levels mean that clipping does not take place.

<table>
<thead>
<tr>
<th>Clipping Level</th>
<th>Downlink + Uplink: 48 DPCHs “minimum crest”</th>
<th>Downlink: 48 DPCHs "minimum crest"</th>
<th>Downlink + Uplink: 10 DPCHs "average crest"</th>
<th>Downlink: 10 DPCHs "average crest"</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>9.47 dB</td>
<td>11.47 dB</td>
<td>7.78 dB</td>
<td>9.71 dB</td>
</tr>
<tr>
<td>80 %</td>
<td>8.77 dB</td>
<td>10.75 dB</td>
<td>6.26 dB</td>
<td>8.33 dB</td>
</tr>
<tr>
<td>50 %</td>
<td>7.33 dB</td>
<td>9.42 dB</td>
<td>6.51 dB</td>
<td>8.64 dB</td>
</tr>
<tr>
<td>20 %</td>
<td>5.82 dB</td>
<td>8.10 dB</td>
<td>4.56 dB</td>
<td>6.95 dB</td>
</tr>
<tr>
<td>10 %</td>
<td>5.69 dB</td>
<td>8.11 dB</td>
<td>4.56 dB</td>
<td>6.95 dB</td>
</tr>
<tr>
<td>5 %</td>
<td>5.80 dB</td>
<td>8.26 dB</td>
<td>4.56 dB</td>
<td>6.95 dB</td>
</tr>
</tbody>
</table>

The following pictures demonstrate the affect of clipping with vector mode (|i+jq|), using a signal configuration with 10 active DPCHs.

Fig. 4-1: Constellation diagram of the signal without clipping, shows the level mapping
Fig. 4-2: Constellation diagram with clipping level 380 %, vector mode (|i+jq|).

Remote command:
[:SOURce<hw>]:BB:TDSCdma:CLIPping:STATe on page 94

Clipping Level
Sets the limit for clipping.
This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:CLIPping:LEVel on page 93

Clipping Mode
Selects the clipping method. A graphic illustration of the way in which these two methods work is given in the dialog.

"Vector |i + q|
The limit is related to the amplitude |i + q|. The I and Q components are mapped together, the angle is retained.

"Scalar |i| + |q|
The limit is related to the absolute maximum of all the I and Q values |i| + |q|.
The I and Q components are mapped separately, the angle changes.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:CLIPping:MODE on page 94

4.2.3 ARB Settings
This section comprises the settings required for configuring the ARB.

Sequence Length ARB
Changes the sequence length of the arbitrary waveform component of the signal. This component is calculated in advance and output in the arbitrary waveform generator. It is added to the realtime signal components.

The number of chips is determined from this sequence length (1 Frame = 10 ms) and the chip rate. At 1.2288 MChips/s a frame equals 12800 chips.

In pure amplifier tests with several channels and no real time channels, it is possible to improve the statistical properties of the signal by increasing the sequence length.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:SLENgth on page 97

4.3 Power Ramping

The "Power Ramping Settings" dialog contains the shape and time parameters required for configuring the baseband power ramp.

- To access these settings, select "TD-SCDMA > Power Ramping".

This dialog comprises the settings required for power ramping.

Ramp Function
Selects the form of the transmitted power, i.e. the shape of the rising and falling edges during power ramp control.

- "Linear" The transmitted power rises and falls linear fashion.
- "Cosine" The transmitted power rises and falls with a cosine-shaped edge. This gives rise to a more favorable spectrum than the Linear setting.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:FRAMP:SHAPE on page 89

Ramp Time
Sets the power ramping rise time and fall time for a burst.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:FRAMP:TIME on page 89
Rise Delay
Sets the offset in the rising edge of the envelope at the start of a burst. A positive value gives rise to a delay and a negative value causes an advance.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:PRAMp:RDELay on page 89

Fall Delay
Sets the offset in the falling edge of the envelope at the end of a burst. A positive value gives a rise to a delay and a negative value causes an advance.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:PRAMp:FDELay on page 88

In Baseband Only
Activates or deactivates power ramping for the baseband signals.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:PRAMp:BBONly on page 88

4.4 Trigger/Marker/Clock Settings
To access this dialog, select "Main dialog > Trigger/Marker".
The "Trigger In" section is where the trigger for the signal is set. Various parameters will be provided for the settings, depending on which trigger source - internal or external - is selected. The current status of signal generation ("Running" or "Stopped") is indicated for all trigger modes.

The "Marker Mode" section is where the marker signals at the MARKER output connectors are configured.

The "Marker Delay" section is where a marker signal delay can be defined, either without restriction or restricted to the dynamic section, i.e., the section in which it is possible to make settings without restarting signal and marker generation.
The "Clock Settings" section is where the clock source is selected and - in the case of an external source - the clock type.

The buttons in the last section lead to subdialog for general trigger, clock and mapping settings.

4.4.1 Trigger In

The "Trigger In" section is where the trigger for the signal is set. Various parameters will be provided for the settings, depending on which trigger source - internal or external - is selected. The current status of signal generation ("Running" or "Stopped") is indicated for all trigger modes.

Trigger Mode

Selects trigger mode, i.e. determines the effect of a trigger event on the signal generation.

- "Auto"
 The signal is generated continuously.
- "Retrigger"
 The signal is generated continuously. A trigger event (internal or external) causes a restart.
- "Armed_Auto"
 The signal is generated only when a trigger event occurs. Then the signal is generated continuously. An "Arm" stops the signal generation. A subsequent trigger event (internal with or external) causes a restart.
- "Armed_Retrigger"
The signal is generated only when a trigger event occurs. Then the signal is generated continuously. Every subsequent trigger event causes a restart. An "Arm" stops signal generation. A subsequent trigger event (internal with or external) causes a restart.

- "Single"
 The signal is generated only when a trigger event occurs. Then the signal is generated once to the length specified at "Signal Duration". Every subsequent trigger event (internal or external) causes a restart.

Remote command:
`[:SOURce<hw>]:BB:TDSCdma[:TRIGger]:SEQuence` on page 102

Signal Duration Unit
Selects the unit for the entry of the length of the signal sequence to be output in the Single trigger mode. Available units are chip sequence length (CLS), chips, or frames.

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:SLUNit` on page 101

Signal Duration
Enters the length of the signal sequence to be output in the "Single" trigger mode.

Use this parameter to deliberately output part of the signal, an exact sequence of the signal, or a defined number of repetitions of the signal.

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:SLENgth` on page 100

Running/Stopped
For enabled modulation, displays the status of signal generation for all trigger modes.

- "Running"
 The signal is generated; a trigger was (internally or externally) initiated in triggered mode.
- "Stopped"
 The signal is not generated and the instrument waits for a trigger event.

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:RMODe?` on page 100

Arm
For trigger modes "Armed Auto" and "Armed Retrigger", stops the signal generation until subsequent trigger event occurs.

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:ARM:EXECute` on page 98

Execute Trigger
Executes trigger manually.

You can execute the trigger manually only if you select an internal trigger source and a trigger mode other than "Auto".

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:EXECute` on page 98
Trigger Source
Selects trigger source. This setting is effective when a trigger mode other than "Auto" has been selected.

- "Internal"
 The trigger event is executed by "Execute Trigger".
- "Internal (Baseband A/B)"
 (two-path instruments)
 The trigger event is the trigger signal from the second path
- "External (Trigger 1/2)"
 The trigger event is the active edge of an external trigger signal, supplied at the TRIGGER 1/2 connector.
 Use the "Global Trigger/Clock Settings" dialog to define the polarity, the trigger threshold and the input impedance of the trigger signal.

Remote command:
[:SOURce<hw>]:BB:TDScm:aTRIGger:SOURce on page 101

Sync. Output to External Trigger
(enabled for Trigger Source External)
Enables/disables output of the signal synchronous to the external trigger event.

For R&S SMBV instruments:
For or two or more R&S SMBVs configured to work in a master-slave mode for synchronous signal generation, configure this parameter depending on the provided system trigger event and the properties of the output signal. See the table below for an overview of the required settings.

Table 4-2: Typical Applications

<table>
<thead>
<tr>
<th>System Trigger</th>
<th>Application</th>
<th>"Sync. Output to External Trigger"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common External Trigger event for the master and the slave instruments</td>
<td>All instruments are synchronous to the external trigger event</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>All instruments are synchronous among themselves but starting the signal from first symbol is more important than synchronicity with external trigger event</td>
<td>OFF</td>
</tr>
<tr>
<td>Internal trigger signal of the master R&S SMBV for the slave instruments</td>
<td>All instruments are synchronous among themselves</td>
<td>OFF</td>
</tr>
</tbody>
</table>
“On”
Corresponds to the default state of this parameter. The signal calculation starts simultaneously with the external trigger event but because of the instrument’s processing time the first samples are cut off and no signal is outputted. After elapsing of the internal processing time, the output signal is synchronous to the trigger event.

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:EXTernal:SYNChronize:OUTPut` on page 98

Trigger Delay
Delays the trigger event of the signal from:
- the external trigger source
- the other path

Use this setting to:
- synchronize the instrument with the device under test (DUT) or other external devices

Remote command:
`[:SOURce<hw>]:BB:TDSCdma:TRIGger[:EXTernal<ch>]:DELay` on page 101
`[:SOURce<hw>]:BB:TDSCdma:TRIGger:OBASeband:DELay` on page 99
Trigger Inhibit
Sets the duration for inhibiting a new trigger event subsequent to triggering. The input is to be expressed in samples.

In the "Retrigger" mode, every trigger signal causes signal generation to restart. This restart is inhibited for the specified number of samples.

This parameter is only available on external triggering or on internal triggering via the second path.

For two-path instruments, the trigger inhibit can be set separately for each of the two paths.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger[:EXTernal<ch>]:INHibit
on page 102
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OBASeband:INHibit on page 99

4.4.2 Marker Mode
The marker output signal for synchronizing external instruments is configured in the marker settings section "Marker Mode".

The R&S SMBV supports only two markers.

Marker Mode
Selects a marker signal for the associated "MARKER" output.

"Radio Frame" A marker signal is generated every 10 ms (traffic channel frame clock).

"Chip Sequence Period (ARB)" A marker signal is generated at the beginning of every arbitrary waveform sequence (depending on the set sequence length). The marker signal is generated regardless of whether or not an ARB component is actually used.

"System Frame Number (SFN) Restart" A marker signal is generated at the start of every SFN period (every 4096 frames).

"On/Off Ratio" A regular marker signal that is defined by an ON/OFF ratio is generated. A period lasts one ON and OFF cycle. The "ON Time" and "OFF Time" are each expressed as a number of samples and are set in an input field which opens when ON/OFF ratio is selected.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:ONTime on page 106
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:OFFTime on page 106
"User Period" A marker signal is generated at the beginning of every user-defined period. The period is defined in "Period."

Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:PERiod on page 107
Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:MODE on page 105

4.4.3 Marker Delay

The delay of the signals on the MARKER outputs is set in the "Marker Delay" section. The R&S SMBV supports only two markers.

Marker x Delay
Enters the delay between the marker signal at the marker outputs and the start of the signal.
If the setting "Fix marker delay to dynamic range" is enabled, the setting range is restricted to the dynamic range. In this range the delay of the marker signals can be set without restarting the marker and signal.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:DELay on page 104

Current Range without Recalculation
Displays the dynamic range within which the delay of the marker signals can be set without restarting the marker and signal.
The delay can be defined by moving the setting mark.
Remote command:

Fix marker delay to current range
Restricts the marker delay setting range to the dynamic range. In this range the delay can be set without restarting the marker and signal.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:DELay:FIXed on page 104

4.4.4 Clock Settings

The Clock Settings is used to set the clock source and a delay if required.

Sync. Mode
(for R&S SMBV only)
Selects the synchronization mode.
This parameter is used to enable generation of very precise synchronous signal of several connected R&S SMBVs.

Note: If several instruments are connected, the connecting cables from the master instrument to the slave one and between each two consecutive slave instruments must have the same length and type. Avoid unnecessary cable length and branching points.

- "None" The instrument is working in stand-alone mode.
- "Sync. Master" The instrument provides all connected instrument with its synchronisation (including the trigger signal) and reference clock signal.
- "Sync. Slave" The instrument receives the synchronisation and reference clock signal from another instrument working in a master mode.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:CLOCk:SYNChronization:MODE
```

Set Synchronization Settings

(For R&S SMBV only)

Performs automatically adjustment of the instrument's settings required for the synchronization mode, selected with the parameter "Synchronization Mode".

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:CLOCk:SYNChronization:EXECute
```

Clock Source

Selects the clock source.

- "Internal" The internal clock reference is used to generate the symbol clock.
- "External" The external clock reference is fed in as the symbol clock or multiple thereof via the CLOCK connector. The symbol rate must be correctly set to an accuracy of +/-2 % (see data sheet). The polarity of the clock input can be changed with the aid of "Global Trigger/Clock Settings". In the case of two-path instruments this selection applies to path A.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:CLOCk:SOURce
```

Clock Mode

Selects the type of externally supplied clock.

- "Chip" A chip clock is supplied via the CLOCK connector.
- "Multiple Chip" A multiple of the chip clock is supplied via the CLOCK connector. The chip clock is derived internally from this. The value range is 1 to 64. The Chip Clock Multiplier field provided allows the multiplication factor to be entered.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:CLOCk:MODE
```
Clock Multiplier
Enters the multiplication factor for clock type "Multiple".
Remote command:
[:SOURce<hw>:BB:TDSCdma:CLOCk:MULTiplier] on page 107

Measured External Clock
Provided for permanent monitoring of the enabled and externally supplied clock signal.
Remote command:
CLOCk:INPut:FREQuency?

4.4.5 Global Settings

The buttons in this section lead to dialogs for general trigger, clock and mapping settings.

Global Trigger/Clock Settings
Calls the "Global Trigger/Clock/Input Settings" dialog.
This dialog is used among other things for setting the trigger threshold, the input impedance and the polarity of the clock and trigger inputs.
The parameters in this dialog affect all digital modulations and standards, and are described in chapter "Global Trigger/Clock/Input Settings" in the Operating Manual.

User Marker / AUX I/O Settings
Calls the "User Marker AUX I/O Settings" dialog, used to map the connector on the rear of the instruments.
See also "User Marker / AUX I/O Settings" in the Operating Manual.

4.5 Predefined Settings

To access this dialog select "TD-SCDMA > Predefined Settings".
The channel table of cell 1 is filled (preset) with the set parameters.

The settings provided in this dialog depend on the link direction and apply only to cell1.
With the "Predefined Settings" function, it is possible to create highly complex scenarios with just a few keystrokes. This function is of use if, say, just the envelope of the signal is of interest.

Use PCCPCH (Downlink Slot 0, code 0+1)
(This feature is available in the downlink only.)
Selects, if P-CCPCH is used in the scenario or not.
If P-CCPCH is used, both P-CCPCHs are activated in slot 0 with spreading code 0+1.
Remote command:
\[[:SOURce<hw>]:BB:TDSCdma:DOWN:PPARameter:PCCPch:STATe \]

Spreading Factor Dedicated Channels
Selects the spreading factor for the DPCHs.
The available spreading factors depend on the link direction.
Remote command:
\[[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:PPARameter:DPCH:SFACtor \]

Number of Dedicated Channels
Sets the number of activated DPCHs.
The minimum number is 1 and the maximum number depends on the spreading factor:
Max. No. DPCH = 3 x Spreading Factor
Remote command:
\[[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:PPARameter:DPCH:COUNt \]

Crest Factor
Selects the desired range for the crest factor scenario.
The crest factor of the signal is kept in the desired range by varying the distribution of the channels inside one slot and in between several slots.
"Minimum" The crest factor is minimized. The channels are distributed uniformly over the slots and over the code domain of the individual slot.
"Average" An average crest factor is set. The channel are distributed uniformly over the slots and successively in the code domain of the individual slot.
"Worst" The crest factor is set to an unfavorable value (i.e. maximum). The channels are distributed in clusters over the slots and successively in the code domain of the individual slot.
Remote command:
\[[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:PPARameter:DPCH:CRESt \]

Accept
Presets the channel table of cell 1 with the parameters defined in the "Predefined Settings" dialog.
Remote command:
\[[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:PPARameter:EXECute \]
4.6 Cell Configuration

The "Cell" dialog provides the parameters for configuring general cell settings, and specific slot related settings.

The "Cell..." configuration dialog is called by selecting "Cell 1... Cell 4" in the "TD-SCDMA" dialog. Cells can be configured independently of one another. Cell 1 also includes real time channels.

4.6.1 Common Settings

The upper section contains the common settings required for configuring the cell.

State
Activates or deactivates the selected cell.

The number of the selected cell is displayed in the dialog header.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:STATe on page 115

Use (Scrambling Code)
Activates or deactivates the scrambling code.

The scrambling code is deactivated, for example, for test purposes.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SCoDe:STATe on page 114

Scrambling Code
Sets the scrambling code. The scrambling code identifies the cell and is the starting value of the scrambling code generator.
The scrambling code is used for transmitter-dependent scrambling of the chip sequence. The value range is 0 to 127.
Remote command:
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{DOWN}\mid\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{SCODe}\]
on page 114

Basic Midamble Code ID
Displays the basic midamble code ID of the cell.
The basic midamble code ID is derived from the scrambling code.
Remote command:
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{DOWN}\mid\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{MCODe}\]
on page 113

DwPTS Mode/ UpPTS Mode
Selects whether to use the pilot time slot and its power or not. In case of Auto and On, the DwPTS/UpPTS is used. This is indicated in the Select Slot in Subframe to Configure graph.
For details regarding the DwPTS/UpPTS, see chapter 3.2, "DwPTS and UpPTS", on page 12.
Remote command:
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{DOWN}:\text{CELL}\langle\text{st}\rangle:\text{DWPTs}:\text{MODe}\]
on page 112
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{DOWN}:\text{CELL}\langle\text{st}\rangle:\text{DWPTs}:\text{STATe}\]
on page 113
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{UPPTs}:\text{MODe}\]
on page 112
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{UPPTs}:\text{STATe}\]
on page 113

DwPTS Power/ UpPTS Power
Sets the power of the downlink/uplink pilot time slot.
Remote command:
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{UPPTs}:\text{MODe}\]
on page 112
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{UPPTs}:\text{POWer}\]
on page 112
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{DOWN}:\text{CELL}\langle\text{st}\rangle:\text{DWPTs}:\text{POWer}\]
on page 112

SYNC-DL Code
Displays the SYNC-DL code.
The SYNC-DL code is transmitted in the DwPTS (downlink pilot time slot). It is used by the user equipment to synchronize to the base station.
The SYNC-DL code is derived from the scrambling code and the basic midamble code ID.
Remote command:
\[
[:\text{SOURce}\langle\text{hw}\rangle]:\text{BB}:\text{TDSCdma}:\text{DOWN}\mid\text{UP}:\text{CELL}\langle\text{st}\rangle:\text{SDCode}\]
on page 114

Phase Rotation
Selects the phase rotation for the downlink pilots.
"Auto" Sets the default phase rotation sequence according to the presence of the P-CCPCH.
"S1" There is a P-CCPCH in the next four subframes.
"S2" There is no P-CCPCH in the next four subframes.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:PROTation on page 113

SYNC-UL Code
Sets the SYNC-UL code.
The SYNC-UL code is transmitted in the UpPTS. It is used by the base station to synchronize to the user equipment.
The SYNC-UL code is derived from the scrambling code and the basic midamble code ID.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SUCodex on page 115

Number of Users
Selects the total number of users of the cell. The number of users influences the actual midamble sequence transmitted in the burst.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:USERsx on page 116

Time Delay
(This feature is available for cell 2, 3, and 4 only)
Enter the time delay of the signal of the selected cell compared to the signal of cell 1.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:TDELay on page 115

4.6.2 Slots
In the lower section of the dialog the slots are selected for configuration.

Enhanced Channels…
(available for cell 1 only)
Accesses the dialog for setting enhanced channel configurations, see chapter 4.7, "Enhanced Channels Settings", on page 42.
Remote command:
n.a.

Switching Point
Sets the switching point between the uplink slots and the downlink slots in the frame.
Slot 0 is always allocated to the downlink, Slot 1 is always allocated to the uplink.
In the "Select Slot in Subframe to Configure" section, the switching point is indicated by a red bar. The slots to the left of the red bar are generated for link direction downlink, to the right of the red bar for link direction uplink. Only the slots for one link direction are active at a time, the slots of the other link direction are inactive.
The DwPTs is always active in downlink mode. The UpPTS is only active if PRACH is selected for the uplink slots.

Remote command:

[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:SPOint

Select Slot in Subframe to Configure

Displays the slots of the cell.

Active slots are highlighted blue (downlink) and green (uplink). Select a slot in the subframe to access the dialog for configuring the channels of the selected slot, see chapter 4.9, "Slot Configuration", on page 65.

Remote command:

n.a.

Slot Icon

Activates or deactivates the slot in the subframe.

Remote command:

[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:STATe

GP (Guard Period)

The base station sends 16 chips of GP in each subframe and is inserted between the DwPTs and UpPTS in each subframe. The GP is used to avoid the multipath interference.

Remote command:

n.a.

4.7 Enhanced Channels Settings

The "Enhanced Channels Settings" dialog is called in the "Cell Configuration" dialog with button "Enhanced Channels...".

"This dialog is only available for Cell 1".

The layout of the "Enhanced Channels Settings" dialog depends on the "Link Direction". For "Downlink / Forward", the Broadcast Channels (BCH) section is provided. All other sections are offered for both link directions.
The "Broadcast Channels (BCH)" section is where the enhanced state of the channels can be activated. The detailed "Transport Channel" settings can be revealed with the "Show Details >>>" button and hidden with the "<<< Hide Details" button.

The "Dedicated Channels (DCH)" section is where the enhanced state of the channel can be activated and settings can be made. The detailed "Transport Channel" settings can be revealed with the "Show Details >>>" button and hidden with the "<<< Hide Details" button.

The "Bit Error Insertion" section is where the bit error simulation is configured and activated.

The "Block Error Insertion" section is where the block error simulation is configured and activated.
4.7.1 Broadcast Channels (BCH) Common Settings

The "Broadcast Channels (BCH)" section is where the enhanced state of the channel can be activated. This section is only available for "Downlink / Forward" transmission direction.

State (BCH)
Activates or deactivates P-CCPCH 1/2 channel coding.
When activated, Slot 0 is active with P-CCPCH 1 and 2 switched on. The data source is fixed to BCH.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:STATe on page 133

Coding Type (BCH)
Displays the coding scheme.
The coding scheme of P-CCPCH (BCH) is specified in the standard. The channel is generated automatically with the counting system frame number (SFN). The system information after the SFN field is provided by the selected data source.
Remote command:

Show Details...
Reveals the detailed settings options (see chapter 4.7.2, "Broadcast Channels (BCH) Details Settings", on page 45). Once the details are revealed, the labeling on the button changes to "<<<Hide Details". Clicking the button hides the detailed settings options.
Remote command:
n.a.
Mapping On Physical Channels: BCH mapped to <Slot> 0, P-CCPCH1/2
Displays the slots of Cell 1 used to transmit the broadcast channels. For BCH Slot 0 is always used.
Remote command:
[:SOURce<hw>]:BB:TDSCDMA:DOWN:CELL<st>:ENH:BCH:SLOTstate<ch0>?
on page 133

Spreading Code Selection (BCH)
Selects if the spreading codes of the channels is set automatically or manually. For BCH, the spreading code is always set to Auto as the spreading code for the P-CCPCH is defined by the standard.
Remote command:
on page 132

4.7.2 Broadcast Channels (BCH) Details Settings

Provided are the following settings:

Slot Format
Displays the slot format of the selected channel.
A slot format defines the complete structure of a slot made of data and control fields.
The slot format depends on the coding type selected.
Remote command:
[:SOURce<hw>]:BB:TDSCDMA:DOWN:CELL<st>:ENH:BCH:SFORmat?
on page 133

Data Bits Per Frame (10 ms)
Displays the data bits in the DPDCH component of the DPCH frame at physical level.
The value depends on the slot format.
Remote command:
[:SOURce<hw>]:BB:TDSCDMA:DOWN:CELL<st>:ENH:BCH:BPFRame?
on page 128

Transport Channel
In the "Transport Channel " section, the transport channels (TCHs) can be configured.
For more information refer to chapter 4.7.5, "Transport Channel", on page 49.

4.7.3 Dedicated Channels (DCH) Common Settings

In the "Dedicated Channels (DCH)" section, the enhanced state of the channel can be activated and enhanced channel settings can be made.

State (DCH)
Activates or deactivates DCH channel coding.
When the state is set to On, it activates the slots selected in the "Mapping On..." graph below. The number and configuration of the DPCHs is defined by the selected coding type. State and slot format of the channels are preset. The data source is fixed to DCH.

Remote command:
on page 127

Coding Type
Selects the channel coding.

The current TD-SCDMA specification defines 4 reference measurement channel (RMC) in the uplink and 5 measurement channel coding types in the downlink, which differ in the input data bit rate to be processed.

Additionally, special RMCs are defined for HSDPA, HSUPA, HS-SICH and PLCCH.

Select one of the predefined downlink RMCs to preconfigure the settings for UE Tests according to 3GPP TS25.102, Annex A.2.

Select one of the predefined uplink RMCs to preconfigure the settings for BS Tests according to 3GPP TS25.142, Annex A.

The selected coding type defines the number of slots selected in section "Mapping On Physical Channels: Select Slots To Use".

- **"RMC 12.2 kbps"** Downlink/uplink 12.2 kbps measurement channel.
 Note: If RMC12K2, RMC64K, RMC144K, or RMC384K are selected for the uplink, they are automatically converted to UP_RMCxxx.

- **"RMC 64 kbps"** Downlink/uplink 64 kbps measurement channel

- **"RMC 144 kbps"** Downlink/uplink 144 kbps measurement channel

- **"RMC 384 kbps"** Downlink/uplink 384 kbps measurement channel

- **"RMC 2048 kbps"** Downlink 2048 kbps measurement channel

- **"RMC PLCCH"** Downlink RMC PLCCH channel (see RMC PLCCH Channel Settings)

- **"HSDPA"** Downlink HSDPA channel (see RMC PLCCH Channel Settings)

- **"RMC HS-SICH"** Uplink RMC for transport channel HS-SICH (see chapter 4.7.7, "RMC HS-SICH Channel Settings", on page 54)

- **"HSUPA"** Uplink RMC for transport channel HSUPA (see chapter 4.7.7, "RMC HS-SICH Channel Settings", on page 54)

- **"User"** The channel settings are user-definable

Remote command:
Resource Units On Physical Layer
Displays the resource units on the physical layer needed to generate the selected channel.

The table below gives an overview of the used resource units (RU) depending on the selected Coding Type. The used Number of Time Slots and Number of Channels is also displayed by the corresponding parameters.

<table>
<thead>
<tr>
<th>RMC</th>
<th>Resources Units Allocated</th>
<th>Description</th>
<th>Transport Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downlink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMC 12.2 Kbps</td>
<td>1TS (2*SF16) = 2RU/5ms</td>
<td>1 slot with 2 code channels using spreading factor 16</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 64 Kbps</td>
<td>1TS (8*SF16) = 8RU/5ms</td>
<td>1 slot with 8 code channels using spreading factor 16</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 144 Kbps</td>
<td>2TS (8*SF16) = 16RU/5ms</td>
<td>2 slots with 8 code channels using spreading factor 16</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 384 Kbps</td>
<td>4TS (10*SF16) = 40RU/5ms</td>
<td>4 slots with 10 code channels using spreading factor 16</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 2048 kbps</td>
<td>5TS (1*SF1) = 80RU/5ms (8PSK)</td>
<td>5 slots with 1 code channel using spreading factor 1</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC-PLCCH</td>
<td>1TS (1*SF16) = 1RU/5ms (QPSK)</td>
<td>1 slot with 1 code channel using spreading factor 16</td>
<td>1DTCH</td>
</tr>
<tr>
<td>Uplink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMC 12.2 Kbps</td>
<td>1TS (1*SF8) = 2RU/5ms</td>
<td>1 slot with 1 code channel using spreading factor 8</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 64 Kbps</td>
<td>1TS (1*SF2) = 8RU/5ms</td>
<td>1 slot with 1 code channel using spreading factor 2</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 144 Kbps</td>
<td>2TS (1*SF2) = 16RU/5ms</td>
<td>2 slots with 1 code channel using spreading factor 2</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC 384 Kbps</td>
<td>4TS (1SF2 + 1SF8) = 40RU/5ms</td>
<td>4 slots with 2 code channel using spreading factor 2 and 8</td>
<td>1DTCH + 1DCCH</td>
</tr>
<tr>
<td>RMC HS-SICH</td>
<td>1TS (1*SF16) = 1RU/5ms</td>
<td>1 slot with 1 code channel using spreading factor 16</td>
<td></td>
</tr>
</tbody>
</table>

See "RMC Configuration" on page 57 and "E-DCH Fixed Reference Channel (FRC)" on page 58 for an overview of the used Resources units in HSDPA and HSUPA mode respectively.

Remote command:

```
```

on page 126
Show Details…
Reveals the detailed settings options (see chapter 4.7.4, "Dedicated Channels (DCH) Details Settings", on page 48). Once the details are revealed, the labeling on the button changes to "<<<Hide Details". Clicking the button hides the detailed settings options.
Remote command:
n.a.

Mapping On Physical Channels: Select Slots To Use
Displays the slots of Cell 1. The slots used to transmit the transport channel are highlighted.
The number selected slots is determined by the selected coding type. If a slot is deactivated, another slot is activated automatically to keep the number of activated slots unchanged.
Remote command:

Spreading Code Selection for Enhanced Channels
Selects the spreading code selection mode for the used transport channels.
"User" The spreading codes can be set manually.
"Auto" The spreading codes are distributed evenly over the slot domains in order to ensure the minimum crest factor.
Remote command:

4.7.4 Dedicated Channels (DCH) Details Settings
Provided are the following settings:

Number of Time Slots (DCH)
Sets the number of time slots to be used.
The initial value is preset according to the selected Coding Type.
Remote command:

Number of Channels (DCH)
Sets the number of channels to be used.
The initial value is preset according to the selected Coding Type.
Remote command:
Slot Format
Displays the slot format of the selected channel.
A slot format defines the complete structure of a slot made of data and control fields.
The slot format depends on the coding type selected.
Remote command:
on page 126

Data Bits Per Frame (10 ms)
Displays the data bits in the DPDCH component of the DPCH frame at physical level.
The value depends on the slot format.
Remote command:

Transport Channel
In the "Transport Channel " section, the transport channels (TCHs) can be configured.
For more information refer to chapter 4.7.5, "Transport Channel", on page 49.

4.7.5 Transport Channel
In the "Transport Channel " section, the transport channels (TCHs) can be configured.
The most important parameters of the TCH are displayed (transport block size and
data source). The associated parameters shown in the section below depend on which
TCH is currently selected. A wide arrow beneath the block indicates which TCH is cur-
rently selected.
DTCH On/DCCH On
Displays the transport channel state.

Note: For BCH, only the DTCH component is active.

Remote command:

Data Source
Selects the data source for the transport channel.
The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to
 select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit
 an existing one.
Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:

Transport Time Interval
Displays the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Remote command:

Transport Blocks
Displays the number of transport blocks for the TCH.

Remote command:

Transport Block Size
Displays the size of the transport block at the channel coding input.

Remote command:

Size Of CRC
Displays the type (length) of the CRC.
Remote command:
on page 128
on page 121

Rate Matching Attribute
Displays the rate matching.
Remote command:
on page 131
on page 124

Error Protection
Displays the error protection.
Remote command:
on page 130
on page 123

Interleaver 1 State
Activates or deactivates the channel coding interleaver state 1 of the transport channel. Interleaver state 1 can be set independently in each TCH. Activation does not change the symbol rate.
Remote command:
on page 130
on page 123

Interleaver 2 State
Activates or deactivates the channel coding interleaver state 2 off all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.
Remote command:
on page 131
on page 124
4.7.6 RMC PLCCH Channel Settings

This dialog comprises the detailed settings required for DCH configuration of the RMC PLCCH channel. The settings are provided for downlink transmission direction and "Coding Type > RMC PLCCH".

Transmission Time Interval (TTI) – RMC PLCCH
Displays the transmission time interval.
Remote command:
on page 118

Number of Sync Shift&TPC Information Bits
Displays the number of information bits used for sync shift and TPC. The RMC PLCCH does not contain data bits.
Remote command:
n.a.

Sync Shift Pattern
Sets the sync shift pattern. The pattern length is 21 bits.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:PLCCh:SSPatten
on page 117
TPC Pattern
Sets the TPC pattern. The pattern length is 21 bits.
Remote command:
on page 117

Repetition Encoder
Displays the state of the repetition encoder.
Remote command:
n.a.

4.7.7 RMC HS-SICH Channel Settings
This dialog comprises the detailed settings required for DCH configuration of the RMC HS-SICH channel. These settings are provided for uplink transmission direction and "Coding Type > RMC HS-SICH".

Transmission Time Interval (TTI) – RMC HS-SICH
Displays the transmission time interval.
Remote command:
on page 119
CQI Modulation
Sets the CQI modulation.
Remote command:

CQI Value
Sets the CQI value.
With the CQI (Channel quality indicator), the user equipment informs the base station about the received quality of downlink HS-PDSCH. Thus the base station can adapt the modulation and coding scheme to improve the signal quality.
Remote command:

ACK/NAK Pattern
Sets the ACK/NACK Pattern. The pattern has a maximal length of 36 bits; a "1" corresponds to ACK, a "0" to NAK.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:ENH:DCH:HSICh:ANPattern on page 118

4.7.8 Bit Error Insertion

In the "Bit Error Insertion" section, the bit error simulation is configured and activated.

State (Bit Error)
Activates or deactivates bit error generation.
Bit errors are inserted into the data fields of the enhanced channels. If channel coding is active, it is possible to select the layer in which the errors are inserted (physical or transport layer).
When the data source is read out, individual bits are deliberately inverted at random points in the data bit stream at the specified error rate in order to simulate an invalid signal.
Remote command:

Bit Error Rate
Enters the bit error rate.
Remote command:

Insert Errors On
Selects the layer in the coding process at which bit errors are inserted.
"Transport Layer"
Bit errors are inserted in the transport layer.
This selection is only available if channel coding is active.

"Physical Layer"
Bit errors are inserted in the physical layer.

Remote command:
on page 119

4.7.9 Block Error Insertion

In the "Block Error Insertion" section, you can configure and activate the block error simulation.

State (Block Error)
Activates or deactivates block error generation.
The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Remote command:
on page 120

Block Error Rate
Enters the block error rate.

Remote command:
on page 120

4.8 HSDPA/HSUPA Settings

The HSDPA settings are available only for downlink transmission and "Coding Type > HSDPA".

The HSUPA settings are available only for uplink transmission and "Coding Type > HSUPA".
4.8.1 HSDPA Settings

Provided are the following settings:

RMC Configuration
(HSDPA only)

Enables a predefined set of RMC channels or fully configurable user mode.

Following combinations are possible:

<table>
<thead>
<tr>
<th>RMC Config.</th>
<th>Modulation</th>
<th>Resources Units Allocated</th>
<th>Description</th>
<th>Transport Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-RMC 0.5 Mbps</td>
<td>QPSK</td>
<td>2TS (10*SF16) = 20RU/5ms</td>
<td>2 slots with 10 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td>H-RMC 1.1 Mbps</td>
<td>QPSK</td>
<td>2TS (10*SF16) = 20RU/5ms</td>
<td>2 slots with 10 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td></td>
<td>16QAM</td>
<td>2TS (12*SF16) = 24RU/5ms</td>
<td>2 slots with 12 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td>H-RMC 1.6 Mbps</td>
<td>QPSK</td>
<td>3TS (10*SF16) = 30RU/5ms</td>
<td>3 slots with 10 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td></td>
<td>16QAM</td>
<td>3TS (12*SF16) = 36RU/5ms</td>
<td>3 slots with 12 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td>H-RMC 2.2 Mbps</td>
<td>QPSK</td>
<td>4TS (10*SF16) = 40RU/5ms</td>
<td>4 slots with 10 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td></td>
<td>16QAM</td>
<td>4TS (12*SF16) = 48RU/5ms</td>
<td>4 slots with 12 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td>H-RMC 2.8 Mbps</td>
<td>QPSK</td>
<td>5TS (10*SF16) = 50RU/5ms</td>
<td>5 slots with 10 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
<tr>
<td></td>
<td>16QAM</td>
<td>5TS (12*SF16) = 50RU/5ms</td>
<td>5 slots with 12 code channels using spreading factor 16</td>
<td>1H-DTCH</td>
</tr>
</tbody>
</table>
Several parameters are automatically set, depending on the selected RMC. However, it is also possible to change these parameters.

In this case, the value of the parameter "RMC Configuration" is automatically set to User.

Remote command:

```
```
on page 154

4.8.2 HSUPA Settings

Provided are the following settings:

E-DCH Fixed Reference Channel (FRC)

(HSUPA only)

Selects a predefined E-DCH fixed reference channel or fully configurable user mode.

Following combinations are possible:

<table>
<thead>
<tr>
<th>FRC</th>
<th>Modulation</th>
<th>Resources Units Allocated</th>
<th>Description</th>
<th>Transport Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QPSK</td>
<td>2TS(1*SF4) = 2RU/5ms</td>
<td>2 slots with 1 code channel using spreading factor 4</td>
<td>1DTCH</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>2TS(1*SF2) = 2RU/5ms</td>
<td>2 slots with 1 code channel using spreading factor 2</td>
<td>1DTCH</td>
</tr>
<tr>
<td>3</td>
<td>16QAM</td>
<td>3TS(1*SF2) = 3RU/5ms</td>
<td>3 slots with 1 code channel using spreading factor 2</td>
<td>1DTCH</td>
</tr>
<tr>
<td>4</td>
<td>16QAM</td>
<td>4TS(1*SF1) = 2RU/5ms</td>
<td>4 slots with 1 code channel using spreading factor 1</td>
<td>1DTCH</td>
</tr>
</tbody>
</table>

User - - - -

Several settings are preconfigured according to the selected FRC.

Remote command:

```
```
on page 157
4.8.3 HS-SCCH Settings (HSDPA)

This section describes the "HS-SCCH" settings.

![HS-SCCH Settings](image)

HS-SCCH State
(HSDPA only)
Enables/disables the HS-SCCH.
Remote command:
```
```
on page 155

UEID (H-RNTI)
(HSDPA only)
Sets the UE identity which is the HS-DSCH Radio network identifier(H-RNTI) defined in 3GPP TS25.331, "Radio resource control (RRC); Prtocol Specification".
Remote command:
```
```
on page 156

4.8.4 Global Settings

This section describes the HSDPA/HSUPA global settings.

![Global Settings](image)

UE Category
Displays the UE category that is minimum required to receive the selected RMC or FRC.
Remote command:
```
```
on page 165

Maximum Information Bit Throughput /kbps
Displays maximum information bits sent in each TTI before coding.
Remote command:
```
```
on page 162
Number of HS-PDSCH/E-DCH Time Slots
Sets the number of time slots.
Remote command:

Number of HS-PDSCH/E-DCH Codes per TS
Sets the number of physical channels per time slot.
Remote command:

Spreading Factor (FRC)
(HSUPA only)
Selects the spreading factor for the FRC.
Remote command:

Number of E-UCCH per TTI
(HSUPA only)
Sets the number of E-UCCH channels per TTI.
Remote command:

Slot Format (HSDPA/HSUPA)
Displays the slot format of the selected channel.
A slot format defines the complete structure of a slot made of data and control fields. The slot format depends on the coding type selected.
Remote command:

Transmission Time Interval (TTI)
Displays the transmission time interval (TTI).
Remote command:

4.8.5 Coding Configuration
This section describes the HSDPA/HSUPA settings, related to the coding.
Data Source (HSDPA/HSUPA)
Selects the data source for the HSDPA/HSUPA channels.

The following standard data sources are available:

- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to
 select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit
 an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the
 instrument.

See also "Main Dialog > Data List Management".

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
DATA on page 160
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
DATA:PATTern on page 161
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
DATA:DSELect on page 160

Modulation (HSDPA/HSUPA)
Sets the modulation scheme for each HSDPA RMC or HSUPA FRC.

64QAM is not available for the HSUPA FRCs.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
MODulation on page 162

Number of Coded Bits Per TTI
Displays the number of bits after coding.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
NCBTti? on page 162
Transport Block Size Table

(HSDPA only)

Sets the transport block size table, according to the specification 3GPP TS 25.321. The values available depend on the selected modulation.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Downlink</th>
<th>Uplink</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>category [1, 3]</td>
<td>category [1, 2]</td>
</tr>
<tr>
<td></td>
<td>category [4, 6]</td>
<td>category [3, 6]</td>
</tr>
<tr>
<td></td>
<td>category [7, 9]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [10, 12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [13, 15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [16, 18]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [19, 21]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [22, 24]</td>
<td></td>
</tr>
<tr>
<td>16QAM</td>
<td>category [4, 6]</td>
<td>category [1, 2]</td>
</tr>
<tr>
<td></td>
<td>category [7, 9]</td>
<td>category [3, 6]</td>
</tr>
<tr>
<td></td>
<td>category [10, 12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [13, 15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [16, 18]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [19, 21]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [22, 24]</td>
<td></td>
</tr>
<tr>
<td>64QAM</td>
<td>category [16, 18]</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>category [19, 21]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>category [22, 24]</td>
<td></td>
</tr>
</tbody>
</table>

Remote command:

Transport Block Size Table 0

(HSUPA only)

Sets the transport block size table, according to the specification 3GPP TS 25.321, Annex BC.

Remote command:

Transport Block Size Index

Selects the index for the corresponding table, as described in 3GPP TS 25.321.

Remote command:

Information Bit Payload (Ninf)
Displays the payload of the information bit, i.e., transport block size. This value determines the number of transport layer bits sent in each TTI before coding.

Remote command:

Coding Rate (HSDPA/HSUPA)
Displays the resulting coding rate.

The coding rate is calculated as a relation between the Information Bit Payload and "Number of Coded Bits per TTI".

Remote command:

Virtual IR Buffer Size (Per HARQ process)
(HSDPA only)
Sets the size of the virtual IR buffer.

Remote command:

4.8.6 Signal Structure

This section describes the HSDPA settings, necessary to configure the signal structure.

Inter TTI Distance
(HSDPA only)
Sets the inter TTI distance, i.e., distance between two packets in HSDPA packet mode and determines whether data is sent each TTI or there is a DTX transmission in some of the TTIs.

An "Inter TTI Distance" of 1 means continuous generation.

Remote command:

Number of HARQ Processes
Sets the number of HARQ processes. This value determines the distribution of the payload in the subframes and depends on the "Inter TTI Distance".
A minimum of 3 HARQ Processes are required to achieve continuous data transmission.

Remote command:

Signaling Pattern
Displays the distribution of packets over time. The Signaling Pattern displays a HARQ-Process cycle and is a sequence of HARQ-IDs and ".". A HARQ-ID indicates a packet, a "." indicates no packet (see figure). The Signaling Pattern is cyclically repeated.

Long signaling patterns with regular repeating groups of HARQ-ID and "." are not displayed completely. The signaling pattern is shortened and ". . ." is displayed but the scheduling is performed according to the selected "Inter TTI Distance". Long signaling patterns with irregularity in the HARQ-ID and "." groups are displayed completely.

Remote command:

4.8.7 HARQ Setup

This section describes the HSDPA/HSUPA Hybrid-ARQ settings.

HARQ Mode
Sets the HARQ simulation mode.

"Constant ACK" New data is used for each new TTI. This mode is used to simulate maximum throughput transmission.

"Constant NACK" Enables NACK simulation, i.e. depending on the sequence selected with parameter "Redundancy Version Sequence" packets are retransmitted. This mode is used for testing with varying redundancy version.

Remote command:

Redundancy Version Parameter
(for "HARQ Mode" set to Constant ACK)
Enters the redundancy version parameter.

Remote command:
Redundancy Version Sequence
(for "HARQ Mode" set to Constant NACK)
Sets the retransmission sequence.
The sequence has a length of maximum 30 values. The sequence length determines the maximum number of retransmissions. New data is retrieved from the data source after reaching the end of the sequence.
For HSUPA, this parameter is read-only.
Remote command:

Retransmission Sequence Number
(for HSUPA and "HARQ Mode" set to Constant ACK)
Sets the retransmission sequence number.
The value is fixed to 0.
Remote command:

Retransmission Sequence
(for HSUPA and "HARQ Mode" set to Constant NACK)
Sets the retransmission sequence.
Remote command:

4.9 Slot Configuration

The "Slot Configuration" dialog is called by selecting the respective slot in the "Cell Configuration" dialog. The most important part of the dialog is the channel table with graphical display of the structure of the channel being edited.
4.9.1 Common Settings

Provided are the following settings:

State
Activates or deactivates the selected slot. The index of the selected slot is displayed in the dialog header.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:STATe on page 145

Slot Mode
(This feature is available in the uplink only.)
Selects the slot mode.
"Dedicated" Selects the Dedicated mode. In this mode, the instrument generates a signal with a dedicated physical control channel (DPCCH) and up to 6 dedicated physical data channels (DPDCH). The signal is used for voice and data transmission.
"PRACH" In this mode, the instrument generates a single physical random access channel (PRACH). This channel is needed to set up the connection between the mobile and the base station. To set the PRACH parameters, see chapter 4.11, "Slot Mode PRACH Settings", on page 77.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:MODE on page 146

Code Domain...
Opens the code domain display to visually check the code domain.
The display is described in chapter 4.12, "Code Domain", on page 81.
Remote command:
n.a.

Channel Graph...
Opens the channel graph display to visually check the configured signal.
The display is described in chapter 4.13, "Channel Graph", on page 83.
Remote command:
n.a.

4.9.2 Channel Table

The "Channel table" is located in the lower part of the "Cell../Slot../DL" configuration dialog.
The channel table is where the individual channel parameters are set. The structure of the channel currently being edited is displayed graphically in the table header.
The number of channels and the available channel types depend on the link direction. In downlink, Channels 0 to 5 are assigned to the special channels, with the allocation of the channels being fixed. In uplink, Channels 0 is assigned to a special channel, with the allocation of the channel being fixed. It is possible to simulate the signal of a base station that supports high speed channels.

See table 4-3 and table 4-4 for overview of the supported channel types and their sequence in the TD-SCDMA channel table.

Table 4-3: Supported channel types (Downlink)

<table>
<thead>
<tr>
<th>Index</th>
<th>Shortform</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P-CCPCH 1</td>
<td>Primary Common Control Phys. Channel 1</td>
<td>Transfers the system frame number (SFN) Timing reference for additional downlink channels Contains the BCH transport channel</td>
</tr>
<tr>
<td>1</td>
<td>P-CCPCH 2</td>
<td>Primary Common Control Phys. Channel 2</td>
<td>Transfers the system frame number (SFN) Timing reference for additional downlink channels Contains the BCH transport channel</td>
</tr>
<tr>
<td>2</td>
<td>S-CCPCH 1</td>
<td>Secondary Common Control Phys. Channel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S-CCPCH 2</td>
<td>Secondary Common Control Phys. Channel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FPACH</td>
<td>Fast Physical Access Channel</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PDSCH</td>
<td>Phys. Downlink Shared Channel</td>
<td></td>
</tr>
<tr>
<td>6-21</td>
<td>DPCH QPSK</td>
<td>Dedicated Phys. Channel Modulation QPSK</td>
<td>Transfers the user data and the control information</td>
</tr>
<tr>
<td></td>
<td>DPCH 8PSK</td>
<td>Dedicated Phys. Channel Modulation 8PSK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HS-SCCH 1</td>
<td>High Speed Shared Control Channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HS-SCCH 2</td>
<td>High Speed Shared Control Channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (QPSK)</td>
<td>High Speed Phys. Downlink Shared Channel QPSK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (16QAM)</td>
<td>High Speed Phys. Downlink Shared Channel 16 QAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HS-PDSCH (64QAM)</td>
<td>High Speed Phys. Downlink Shared Channel 64QAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLCCH</td>
<td>Physical layer common control channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-AGCH</td>
<td>E-DCH Absolute Grant Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-HICH</td>
<td>E-DCH Hybrid ARQ Indicator Channel</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-4: Supported channel types (Uplink)

<table>
<thead>
<tr>
<th>Index</th>
<th>Shortform</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PUSCH</td>
<td>Phys. Uplink Shared Channel</td>
<td></td>
</tr>
<tr>
<td>1-16</td>
<td>DPCH QPSK</td>
<td>Dedicated Phys. Channel Modulation QPSK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPCH 8PSK</td>
<td>Dedicated Phys. Channel Modulation 8PSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HS-SICH</td>
<td>High Speed Shared Information Channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-PUCH (QPSK)</td>
<td>E-DCH Uplink Physical Channel (QPSK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-PUCH (16QAM)</td>
<td>E-DCH Uplink Physical Channel (16QAM)</td>
</tr>
<tr>
<td></td>
<td>E-RUCCH</td>
<td>E-DCH Random Access Uplink Control Channel</td>
<td></td>
</tr>
</tbody>
</table>

Channel Number

Displays the consecutive channel numbers. The range depends on the selected transmission direction.

All available channels are displayed, even those that are inactive. Each channel is activated/deactivated by the "State" button.

Remote command:
n.a.

Channel Type

Selects the channel type.

In the uplink, the channel type is fixed for channel number 0.

In the downlink, the channel type is fixed for channel numbers 0 to 5.

For the remaining numbers, the choice lies between the relevant standard channels and the high speed channels (see table 4-3 and table 4-4).

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:TYPE
```

on page 144

Enhanced

Displays the enhanced state. If the enhanced state is set to ON, the channel coding cannot be changed.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:ENHanced?
```

on page 142
Crt.User/Mid.Shift
Enters the value for the user and displays the midamble shift.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:USER
```
on page 145

Slot Fmt
Enters the slot format for the selected channel.

The range of the values depends on the channel selected. For DPCH 8PSK channels, for example, the value range for the slot formats is 0 to 24.

A slot format defines the complete structure of a slot made of data and control fields and includes the symbol rate.

Parameters set via the slot format can subsequently be changed individually.

The structure of the channel currently selected is displayed in a graphic above the channel table.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SFORmat
```
on page 144

Sprd. Fact.
Enters the spreading factor for the selected channel. The selection depends on the channel type and interacts with the slot format.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SFACtor
```
on page 144

Sprd. Code
Enters the spreading code for the selected channel. The code channel is spread with the set spreading code. The range of values for the spreading code depends on the channel type and the spreading factor. Depending on the channel type, the range of values can be limited.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SCODE
```
on page 143

Power/dB
Sets the channel power in dB.

The power entered is relative to the powers outputs of the other channels. If "Adjust Total Power to 0 dB" is executed (top level of the TD-SCDMA dialog), all the power data is relative to 0 dB.

The value range is -80 dB to 0 dB.
Note: The maximum channel power of 0 dB applies to non-blanked channels (duty cycle 100%), with blanked channels, the maximum value can be increased (by Adjust Total Power) to values greater than 0 dB to $10 \cdot \log_{10}(1/\text{duty}_\text{cycle})$.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:POWer
```

on page 143

Data

Selects data source.

The following standard data sources are available:

- **"All 0, All 1"**
 - An internally generated sequence containing 0 data or 1 data.

- **"PNxx"**
 - An internally generated pseudo-random noise sequence.

- **"Pattern"**
 - An internally generated sequence according to a bit pattern.
 - Use the "Pattern" box to define the bit pattern.

- **"Data List/Select DList"**
 - A binary data from a data list, internally or externally generated.
 - Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.

 See also "Main Dialog > Data List Management".

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA
```

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA:DSELECT
```

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA:PATTERN
```

on page 137

DPCCH Settings

Accesses the dialog for configuring the control fields of the selected channel.

The selected slot format predetermines the setting of the control fields.

So a change is also made to the control fields by changing the slot format and vice versa.

The dialog is described in chapter 4.10, "DPCCH Settings", on page 71

Remote command:

n.a.
State
Activates or deactivates the channel.

Remote command:
```plaintext
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:STATe
```
on page 144

Dom. Conf.
Displays whether the channel has a code domain conflict with one of the overlapping channels (with lower channel number).

If there is a conflict, a red dot appears and the column is colored soft orange. If there is no conflict, the column is colored soft blue.

The R&S Signal Generator helps to resolve code domain conflicts. You get the button required for this purpose by clicking the table field in a subdialog.

The graphical display of the code domain assignment of active code channels can be accessed with the "Code Domain" button (see chapter 4.12, "Code Domain", on page 81).

Remote command:
```plaintext
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:DCONflict?
```
on page 145

4.10 DPCCH Settings

The "Config DPCCH" dialog for configuring the fields of the dedicated physical controller can be called in the channel table in column "DPCCH Settings" with the "Config..." button.
The selected slot format predetermines the setting of the parameters provided in the dialog. Whenever the TFCI State and Pilot Length settings are changed, the slot format is adjusted accordingly. Pilot Length and TFCI State can be selected for the S-CCPCH channel.

4.10.1 Slot Structure and Slot Format

The upper section of the dialog displays the slot structure with the associated information.

Slot Structure
Displays the slot structure.

The structure in the graph represents the currently selected slot format.

Remote command:
- n.a.

Slot Format
Displays the slot format.
The slot format display changes when the "Number of TFCI Bits" and the "Number of Sync Shift & TPC Bits" are modified.

Remote command:
\[
{:SOURce<hw>}:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SFORmat
\]
on page 144

Midamble Shift
Displays the midamble shift.

The midamble can be shifted in the range of 0 to 120 chips in increments of 8 chips. Channels belonging to the same user equipment are characterized by the same midamble shift.

Remote command:
\[
{:SOURce<hw>}:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:MSHift?
\]
on page 142

4.10.2 TFCI Settings

The "TFCI Settings" section is where the TFCI length and value are set.

Number of TFCI Bits
Selects the length of the TFCI field expressed in bits.

Remote command:
\[
{:SOURce<hw>}:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TFCI:LENGth
\]
on page 139

TFCI Value
Enters the value of the TFCI field. The value range is 0 to 1023.

The coded TFCI word is divided into 4 parts:

Remote command:
\[
{:SOURce<hw>}:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TFCI:VALue
\]
on page 139
4.10.3 Sync Shift Settings

The "Sync Shift Settings" section is where the settings regarding the Sync Shift are set.

<table>
<thead>
<tr>
<th>Sync Shift Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Sync Shift & TPC Bits</td>
</tr>
<tr>
<td>Sync Shift Pattern</td>
</tr>
<tr>
<td>Sync Shift Repetition M</td>
</tr>
</tbody>
</table>

Number of Sync Shift & TPC Bits
Selects the length of the sync shift and the length of the TPC field expressed in bits. The available values depend on the slot format.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:SYNC:LENGth
```
on page 138

Sync Shift Pattern
Enters the bit pattern for the sync shift. The maximum pattern length is 64 bits.

The following values are allowed:
- 0: decreases the sync shift
- 1: increases the sync shift
- -: the sync shift stays unchanged

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:SYNC:PATTern
```
on page 138

Sync Shift Repetition M
Enters the value for the sync shift repetition. This value defines the spacing for the sync shift which is used to transmit a new timing adjustment. M specifies the spacing in subframes of 5 ms each.

Remote command:

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:SYNC:REPetition
```
on page 139

4.10.4 E-UCCH Settings

The "E-UCCH Settings" section is available for "Channel Type > E-PUCH QPSK 16QAM" in "Link Direction > Uplink / Reverse".

Operating Manual 1171.5260.12 — 15
These settings are preconfigured and disabled, if a HSUPA coding type is enabled for the corresponding channel.

Number of E-UCCH Channels
Sets the number of the E-DCH Uplink Control Channels (E-UCCH).
Remote command:
```
[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:EUCC:CCOunt
```
on page 135

Number of Phy. Chan. Bits per E-UCCH
Displays the number of physical channel bits per one E-UCCH.
The value is fixed to 32.
Remote command:
n.a.

E-TFCI Value
Enters the value of the TFCI field.
If a HSUPA is enabled for the corresponding channel, the E-TFCI value is set ot the value configured for the parameter *Transport Block Size Index*.
Remote command:
```
[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:EUCC:TFCI
```
on page 136

Retransmission Sequence Number (E-UCCH)
Sets the retransmission sequence number.
Remote command:
```
[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:EUCC:RSNumber
```
on page 136

HARQ Process ID
Sets the HARQ process ID.
Remote command:
```
[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:EUCC:HPID
```
on page 136

E-UCCH Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Of E-UCCH Channels</td>
<td>0</td>
</tr>
<tr>
<td>Number Of Phy. Chan. Bits Per E-UCCH</td>
<td>32</td>
</tr>
<tr>
<td>Number Of Phy. Chan. Bits Per E-UCCH (Bits 0..15 Mapped To E-UCCH Part 1 And Bits 16..31 Mapped To E-UCCH Part 2)</td>
<td>0</td>
</tr>
<tr>
<td>E-TFCI Value</td>
<td>0</td>
</tr>
<tr>
<td>Retransmission Sequence Number</td>
<td>0</td>
</tr>
<tr>
<td>HARQ Process ID</td>
<td>0</td>
</tr>
</tbody>
</table>
4.10.5 TPC Settings

The "TPC Settings" section is where the TPC field is set. The selected "Link direction" determines the available parameters.

Number of Sync Shift & TPC Bits
Selects the length of the sync shift and the length of the TPC field expressed in bits. The available values depend on the slot format.

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:SYNC:LENGth on page 138

Number of TPC Bits Per E-UCCH
Displays the number of the TPC field bits of the E-UCCH channel type, i.e. in uplink transmission direction.

Remote command:
n.a.

TPC Source
Selects the data source for the TPC field of the DPCCH.

The following standard data sources are available:

- "Pattern"
 An internally generated sequence according to a bit pattern.
 Use the "Pattern" box to define the bit pattern.

- "Data List/Select DList"
 A binary data from a data list, internally or externally generated.
 Select "Select DList" to access the standard "Select List" dialog.
 - Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
 - Use the standard "File Manager" function to transfer external data lists to the instrument.
 - Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.

 See also "Main Dialog > Data List Management".

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TPC:DATA on page 140
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TPC:DATA:PATTern on page 141
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TPC:DATA:DSELect on page 140
Read Out Mode
Selects TPC data usage.

With TD-SCDMA, the TPC bits are used to signal the increase or reduction in transmit power to the called station. With all read out modes, one bit is taken from the data stream for the TPC field for each slot and entered into the bit stream several times (depending on the symbol rate). The difference between the modes lies in the usage of the TPC bits.

These different modes can be used, for example, to deliberately set a base station to a specific output power (e.g. with the pattern 11111) and then let it oscillate around this power (with Single + alt. 01 and Single + alt. 10). This then allows power measurements to be carried out at the base station (at a quasi-constant power).

"Continuous" The TPC bits are used cyclically.
"Single + All 0" The TPC bits are used once, and then the TPC sequence is continued with 0 bits.
"Single + All 1" The TPC bits are used once, and then the TPC sequence is continued with 1 bits.
"Single + alt. 01" The TPC bits are used once, and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on by the symbol rate, for example, 00001111).
"Single + alt. 10" The TPC bits are used once, and then the TPC sequence is continued with 1 and 0 bits alternately (in multiples, depending on by the symbol rate, for example, 1110000).

Remote command:
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TPC:READ on page 141

4.11 Slot Mode PRACH Settings

For uplink transmission direction, the "TD-SCDMA-Cell/Slot../UL" dialog contains the parameters required for configuring the (physical random access channel) PRACH and the UpTS (uplink pilot time slot).

The PRACH settings dialog can be called by selecting slot mode "PRACH" in the "Slot Configuration" dialog.
4.11.1 Common Settings

The upper section of the dialog comprises the common PRACH settings.

Power Step
Enters the power by which the UpPTS is increased from repetition to repetition. The power set under Power is the "target power", used during the last repetition of the preamble.

Example:
UpPTS Power = 0 dB
UpPTS Repetition = 3
Power Step = 3
Generated power sequence:

<table>
<thead>
<tr>
<th>Preamble 1</th>
<th>+ 3 dB</th>
<th>Preamble 2</th>
<th>+ 3 dB</th>
<th>Preamble 3</th>
<th>0 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6 dB</td>
<td></td>
<td>-3 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PSStep
```
on page 152

UpPTS Start
Enters the number of the subframe in which the first UpPTS should be transmitted. The value range is 0 to 10.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:STARt
```
on page 152

Distance UpPTS
Enters the value to vary the timing between UpPTS and RACH.

Remote command:
```
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:DISTance
```
on page 150
Sequence Length
Displays the value of the sequence length.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:SLENgth?
on page 153

4.11.2 UpPTS Settings

In this section, you can configure the UpPTS power and repetition.

Power
Enters the power of the UpPTS.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:POWer
on page 151
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PCORrection?
on page 151

UpPTS Repetition
Enters the number of UpPTS repetitions before a PRACH burst happens.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:REPetition
on page 152

4.11.3 RACH Message Part Settings

This section comprises the RACH (random access channel) message part settings.

State (RACH Message Part)
Activates or deactivates the RACH (random access channel) message part.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:STATe
on page 150
Message Length
Selects the message length of the random access channel expressed in subframes.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:LENGth

Slot Format (PRACH)
Displays the slot format of the PRACH. The slot format depends on the selected spreading factor.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFORmat?

Power (RACH Message Part)
Enters the power of the PRACH message part.
The value range is -80 dB to 0 dB.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:POWer

Spreading Factor (PRACH)
Selects the spreading factor for the PRACH.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFACtor

Spreading Code (PRACH)
Enters the spreading code for the PRACH. The code channel is spread with the set spreading code. The range of values of the spreading code depends on the channel type and the spreading factor.
Remote command:
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SCODe

Data Source (PRACH)
Selects data source for the PRACH.
The following standard data sources are available:
- "All 0, All 1"
 An internally generated sequence containing 0 data or 1 data.
- "PNxx"
 An internally generated pseudo-random noise sequence.
- "Pattern"
 An internally generated sequence according to a bit pattern. Use the "Pattern" box to define the bit pattern.
- "Data List/Select DList"
A binary data from a data list, internally or externally generated. Select "Select DList" to access the standard "Select List" dialog.
- Select the "Select Data List > navigate to the list file *.dm_iqd > Select" to select an existing data list.
- Use the "New" and "Edit" functions to create internally new data list or to edit an existing one.
- Use the standard "File Manager" function to transfer external data lists to the instrument.

See also "Main Dialog > Data List Management".

Remote command:

\[[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA\]
\[[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA: DSELect\]
\[[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA: PATTern\]

Current User (PRACH)
Enters the number of current user.

Remote command:

\[[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:USER\]

Midamble Shift (PRACH)
Displays the value for the midamble shift.

Remote command:

\[[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:MShift?\]

4.12 Code Domain

The channelization codes are taken from a code tree of hierarchical structure (see figure 4-3). The higher the spreading factor, the smaller the symbol rate and vice versa. The product of the spreading factor and symbol rate is constant and always yields the chip rate.

The outer branches of the tree (right-most position in the figure) indicate the channelization codes for the smallest symbol rate (and thus the highest spreading factor). The use of a channelization code of the level with spreading factor N blocks the use of all other channelization codes of levels with spreading factor >N available in the same branch of the code tree. Channelization codes with smaller spreading factor are contained in the codes with larger spreading factor in the same code branch. When using such competitive channelization codes at the same time, the signals of associated code channels are mixed such that they can no longer be separated in the receiver. Orthogonality will then be lost.
Fig. 4-3: Code tree of channelization codes

The domain of a certain channelization code is the outer branch range (with minimum symbol rate and max. spreading factor) which is based on the channelization code selected in the code tree. Using a spreading code means that its entire domain is used.

The Code Domain indicates the assigned code domain.

The channelization code is plotted at the X axis, the colored bars indicate coherent code channels. The colors are assigned to the spreading factor, the allocation is shown below the graph. The relative power can be taken from the height of the bar.
4.13 Channel Graph

The channel graph display shows the active code channels.

The channel number is plotted on the X axis. The red bars represent the special channel (P-CCPCH1 to PDSCH in the downlink, P-CCPCH1 to PUSCH in the uplink), the green bars the data channels (DPCH). The height of the bars shows the relative power of the channel. The graph is calculated from the settings that have been made.
5 Remote-Control Commands

The following commands are required to perform signal generation with the TD-SCDMA options in a remote environment. We assume that the R&S Signal Generator has already been set up for remote operation in a network as described in the R&S Signal Generator documentation. A knowledge about the remote control operation and the SCPI command syntax are assumed.

Conventions used in SCPI command descriptions

For a description of the conventions used in the remote command descriptions, see section “Remote Control Commands” in the R&S Signal Generator operating manual.

Common Suffixes

The following common suffixes are used in remote commands:

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Value range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce<hw></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>OUTPut<ch></td>
<td>1 .. 4</td>
<td>available markers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R&S SMBV supports two markers</td>
</tr>
<tr>
<td>EXTernal<ch></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Placeholder <root>

For commands that read out or save files in the default directory, the default directory is set using command MMEM:CDIRectory. The examples in this description use the placeholder <root> in the syntax of the command.

- D:\ - for selecting the internal hard disk of a Windows instrument
- E:\ - for selecting the memory stick which is inserted at the USB interface of a Windows instrument
- /var/user/ - for selecting the internal flash card of a Linux instrument
- /usb/ - for selecting the memory stick which is inserted at the USB interface of a Linux instrument.
Tasks (in manual or remote operation) that are also performed in the base unit in the same way are not described here.

In particular, this includes:
- Managing settings and data lists, i.e. storing and loading settings, creating and accessing data lists, accessing files in a particular directory, etc.
- Information on regular trigger, marker and clock signals as well as filter settings, if appropriate.
- General instrument configuration, such as configuring networks and remote operation
- Using the common status registers

For a description of such tasks, see the R&S Signal Generator operating manual.

The following commands specific to the TD-SCDMA are described here:

5.1 General Commands

- `[SOURce<hw>]:BB:TDSCdma:COPY:DESTination` ... 85
- `[SOURce<hw>]:BB:TDSCdma:COPY:EXECute` ... 86
- `[SOURce<hw>]:BB:TDSCdma:COPY:SOURce` .. 86
- `[SOURce<hw>]:BB:TDSCdma:CRATe?` .. 87
- `[SOURce<hw>]:BB:TDSCdma:CRATe:VARiation` ... 87
- `[SOURce<hw>]:BB:TDSCdma:LINK` .. 87
- `[SOURce<hw>]:BB:TDSCdma:POWer:ADJust` ... 88
- `[SOURce<hw>]:BB:TDSCdma:POWer[:TOTal]` ... 88
- `[SOURce<hw>]:BB:TDSCdma:PRAMp:BBONly` ... 88
- `[SOURce<hw>]:BB:TDSCdma:PRAMp:FDELay` ... 88
- `[SOURce<hw>]:BB:TDSCdma:PRAMp:RDELay` ... 89
- `[SOURce<hw>]:BB:TDSCdma:PRAMp:SHApe` .. 89
- `[SOURce<hw>]:BB:TDSCdma:PRAMp:TIME` ... 89
- `[SOURce<hw>]:BB:TDSCdma:PRESet` ... 90
- `[SOURce<hw>]:BB:TDSCdma:RESet` .. 90
- `[SOURce<hw>]:BB:TDSCdma:SETTing:CATalog?` ... 90
- `[SOURce<hw>]:BB:TDSCdma:SETTing:LOAD` ... 91
- `[SOURce<hw>]:BB:TDSCdma:SETTing:STORE` ... 91
- `[SOURce<hw>]:BB:TDSCdma:SETTing:STORE:FAST` ... 91
- `[SOURce<hw>]:BB:TDSCdma:SETTing:TMODel` ... 91
- `[SOURce<hw>]:BB:TDSCdma:SETTing:TMODel:CATalog?` ... 92
- `[SOURce<hw>]:BB:TDSCdma:STATE` .. 92
- `[SOURce<hw>]:BB:TDSCdma:VERSion?` .. 92
- `[SOURce<hw>]:BB:TDSCdma:WAVeform:CREate` 93

`:SOURce<hw>]:BB:TDSCdma:COPY:DESTination <Destination>

The command selects the cell whose settings are to be overwritten.
Parameters:

<Destination>
1 | 2 | 3 | 4
Range: 1 to 4
*RST: 2 (Cell2)

Example:
BB:TDSC:LINK DOWN
selects the downlink/forward transmit direction (base station to mobile station).
BB:TDSC:COPY:SOUR 1
selects cell 1 as the source.
BB:TDSC:COPY:DEST 4
selects cell 4 as the destination.
BB:TDSC:COPY:EXEC
starts copying the parameter set of cell 1 to cell 4.

Manual operation:
See "Copy Cell..." on page 22

[:SOURce<hw>]:BB:TDSCdma:COPY:EXECute

The command starts the copy process. The dataset of the selected source cell is copied to the destination cell.

Example:
BB:TDSC:COPY:EXEC
starts copying the parameter set of the selected source cell to the selected destination cell.

Usage:
Event
Manual operation:
See "Copy Cell..." on page 22

[:SOURce<hw>]:BB:TDSCdma:COPY:SOURce <Source>

The command selects the cell whose settings are to be copied.

Parameters:

<Source>
1 | 2 | 3 | 4
Range: 1 to 4
*RST: 1 (Cell1)

Example:
BB:TDSC:LINK UP
selects the uplink transmit direction (mobile station to base station).
BB:TDSC:COPY:SOUR 1
selects cell 1 as the source.
BB:TDSC:COPY:DEST 4
selects cell 4 as the destination.
BB:TDSC:COPY:EXEC
starts copying the parameter set of cell 1 to cell 4.

Manual operation:
See "Copy Cell..." on page 22
The command queries the system chip rate. The output chip rate which determines the rate of the spread symbols as is used for signal output can be set with the command SOUR:BB:TDSC:CRAT:VAR.

Return values:

<table>
<thead>
<tr>
<th><CRate></th>
<th>R1M28</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>R1M28</td>
</tr>
</tbody>
</table>

Example:

BB:TDSC:CRAT?
queries the system chip rate.
Response: R1M2
the system chip rate is 1.2288 Mcps.

Usage: Query only

Manual operation: See "Chip Rate" on page 19

Sets the output chip rate.

The output chip rate changes the output clock and the modulation bandwidth, as well as the synchronization signals that are output. It does not affect the calculated chip sequence.

Parameters:

<table>
<thead>
<tr>
<th><Variation></th>
<th>float</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>400 to 5E6</td>
</tr>
<tr>
<td>Increment:</td>
<td>0.001</td>
</tr>
<tr>
<td>*RST:</td>
<td>1280000</td>
</tr>
<tr>
<td>Default unit: Hz (c/s)</td>
<td></td>
</tr>
</tbody>
</table>

Example:

BB:TDSC:CRAT:VAR 4086001
sets the chip rate to 4.08 Mcps.

Manual operation: See "Chip Rate Variation" on page 25

The command defines the transmission direction. The signal either corresponds to that of a base station (FORWard | DOWN) or that of a mobile station (REVerse | UP).

Parameters:

<table>
<thead>
<tr>
<th><Link></th>
<th>FORWard</th>
<th>DOWN</th>
<th>REVerse</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>DOWN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

BB:TDSC:LINK DOWN
the transmission direction selected is base station to mobile station. The signal corresponds to that of a base station.

Manual operation: See "Link Direction" on page 20
[:SOURce<hw>:]:BB:TDSCDMA:POWer:ADJust

The command sets the power of the active channels in such a way that the total power of the active channels is 0 dB. This will not change the power ratio among the individual channels.

Example:

BB:TDSC:POW:ADJ

the total power of the active channels is set to 0 dB, the power ratio among the individual channels is unchanged.

Usage: Event

Manual operation: See "Adjust Total Power to 0dB" on page 22

[:SOURce<hw>:]:BB:TDSCDMA:POWer[:TOTal]?

Queries the total power of the active channels. After "Power Adjust", this power corresponds to 0 dB.

Return values:

<Total> float

Increment: 0.01

Example:

BB:TDSC:POW:TOT?

queries the total power of the active channels.

Response: -22.5

the total power is -22.5 dB.

Usage: Query only

Manual operation: See "Total Power" on page 23

[:SOURce<hw>:]:BB:TDSCDMA:PRAMp:BBONly <BbOnly>

The command activates or deactivates power ramping for the baseband signals.

Parameters:

<BbOnly> 0 | 1 | OFF | ON

*RST: OFF

Example:

BB:TDSC:PRAM:BBON ON

activates power ramping for the baseband signals.

Manual operation: See "In Baseband Only" on page 29

[:SOURce<hw>:]:BB:TDSCDMA:PRAMp:FDEDelay <FDelay>

The command sets the offset in the falling edge of the envelope at the end of a burst. A positive value gives a rise to a delay and a negative value causes an advance.
Parameters:

\(<\text{FDelay}>\) integer

Range: -4 to 4

*RST: 2

Example: \(\text{BB:TDSC:PRAM:FDEL 8.0}\)
sets the offset in the falling edge of the envelope to 8.0 chips.

Manual operation: See "Fall Delay" on page 29

\([\text{:SOURce<hw>}]:\text{BB:TDSCdma:PRAMp:RDELay}<\text{RDelay}>\)

The command sets the offset in the falling edge of the envelope at the end of a burst. A positive value gives a rise to a delay and a negative value causes an advance.

Parameters:

\(<\text{RDelay}>\) integer

Range: -4 to 4

*RST: -2

Example: \(\text{BB:TDSC:PRAM:RDEL 8.0}\)
sets the offset in the rising edge of the envelope to 8.0 chips.

Manual operation: See "Rise Delay" on page 29

\([\text{:SOURce<hw>}]:\text{BB:TDSCdma:PRAMp:SHAPe}<\text{Shape}>\)

The command selects the form of the transmitted power, i.e. the shape of the rising and falling edges during power ramp control.

Parameters:

\(<\text{Shape}>\) LINear | COSine

*RST: COSine

Example: \(\text{BB:TDSC:PRAM:SHAP LIN}\)
sets linear shape for the rising and falling edges during power ramp control.

Manual operation: See "Ramp Function" on page 28

\([\text{:SOURce<hw>}]:\text{BB:TDSCdma:PRAMp:TIME}<\text{Time}>\)

The command sets the power ramping rise time and fall time for a burst.

Parameters:

\(<\text{Time}>\) integer

Range: 0 to 4

*RST: 2

Example: \(\text{BB:TDSC:PRAM:TIME 2.0}\)
sets the power ramping rise time and fall time for a burst to 2 chips.
Remote-Control Commands

Operating Manual 1171.5260.12 ─ 15

Manual operation: See "Ramp Time" on page 28

[:SOURce<hw>]:BB:TDSCdma:PRESet

Sets the parameters of the digital standard to their default values (*RST values specified for the commands).

Not affected is the state set with the command SOURce<hw>:BB:TDSCdma:STATe

Example: SOURce1:BB:TDSCdma:PRESet

Usage: Event

Manual operation: See "Set To Default" on page 17

[:SOURce<hw>]:BB:TDSCdma:RESet

The command resets all cells to the predefined settings. The reset applies to the selected link direction.

An overview is provided by table in .Set To Default

Example: BB:TDSC:RES resets all the cells to the predefined settings.

Usage: Event

Manual operation: See "Reset All Cells" on page 21

[:SOURce<hw>]:BB:TDSCdma:SETTing:CATalog?

This command reads out the files with TD-SCDMA settings in the default directory. The default directory is set using command MMEM:CDIRectory. Only files with the file extension *.tdscdma will be listed.

Return values:

<Catalog> string

Example: MMEM:CDIR "<root>tdscdma" sets the default directory to <root>tdscdma.
BB:TDSC:SETT:CAT? reads out all the files with TD-SCDMA settings in the default directory.
Response: "'TDSCDMA_UP','TDSCDMA_DN'" the files "TDSCDMA_UP" and "TDSCDMA_DN" are available.

Usage: Query only

Manual operation: See "Save/Recall..." on page 17
[:SOURce<hw>]:BB:TDSCdma:SETting:LOAD <Filename>

This command loads the selected file with TD-SCDMA settings. The directory is set using command `MMEM:CDIRectory`. A path can also be specified, in which case the files in the specified directory are read. The file extension may be omitted. Only files with the file extension `*.tdscdma` will be loaded.

Setting parameters:
- `<Filename>`: string

Example:
```plaintext
BB:TDSC:SETT:LOAD 'tdscdma_1'
loads file tdscdma_1.
```

Usage: Setting only

Manual operation: See "Save/Recall..." on page 17

[:SOURce<hw>]:BB:TDSCdma:SETting:STORe <Filename>

This command stores the current TD-SCDMA settings into the selected file. The directory is set using command `MMEM:CDIRectory`. A path can also be specified, in which case the files in the specified directory are read. Only the file name has to be entered. TD-SCDMA settings are stored as files with the specific file extensions `*.tdscdma`.

Setting parameters:
- `<Filename>`: string

Example:
```plaintext
BB:TDSC:SETT:STOR 'tdscdma_1'
stores the current TD-SCDMA settings into file tdscdma_1.
```

Usage: Setting only

Manual operation: See "Save/Recall..." on page 17

[:SOURce<hw>]:BB:TDSCdma:SETting:STORe:FAST <Fast>

Determines whether the instrument performs an absolute or a differential storing of the settings.

Enable this function to accelerate the saving process by saving only the settings with values different to the default ones.

Note: This function is not affected by the "Preset" function.

Parameters:
- `<Fast>`: 0 | 1 | OFF | ON

```
*RST: ON
```

Manual operation: See "Save/Recall..." on page 17

[:SOURce<hw>]:BB:TDSCdma:SETting:TMODEl <TModel>

Selects the file with the test models defined in the TD-SCDMA standard or a self-defined test setup.
Parameters:
<TModel> string

Example: BB:TDSC:SETT:TMOD 'Test_Mode_ACLR' calls the specified test model.

Manual operation: See "Test Setups/Models" on page 23

[:SOURce<hw>]:BB:TDSCdma:SETTing:TMODEl:CATalog?

This command queries the file with the test models defined in the TD-SCDMA standard or a self-defined test setup.

Return values:
<Catalog> string

Example: MMEM:CDIR "<root>tdscdma" sets the default directory to <root>tdscdma. BB:TDSC:SETT:CAT? reads out all the files with the test models. Response: "'TDSCDMA_TM1', 'TDSCDMA_TM2'" the files TDSCDMA_TM1 and TDSCDMA_TM2 are available.

Usage: Query only

[:SOURce<hw>]:BB:TDSCdma:STATe <State>

Activates the standard and deactivates all the other digital standards and digital modulation modes in the same path.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: 0

Example: SOURce1:BB:TDSCdma:STATe ON

Manual operation: See "State" on page 17

[:SOURce<hw>]:BB:TDSCdma:VERSion?

The command queries the version of the TD-SCDMA standard underlying the definitions.

Return values:
<Version> string

Usage: Query only

Manual operation: See "TD-SCDMA Version" on page 19
[:SOURce<hw>]:BB:TDSCdma:WAVeform:CREate <Filename>

This command creates a waveform using the current settings of the "TD-SCDMA" dialog. The file name is entered with the command. The file is stored with the predefined file extension ".wv". The file name and the directory it is stored in are user-definable.

Setting parameters:

<Filename> string

Example:

MMEM:CDIR "<root>waveform"
BB:TDSC:WAV:CRE "tdscdma_1"
creates the waveform file tdscdma.wv in the default directory.

Usage: Setting only

Manual operation: See "Generate Waveform File..." on page 19

5.2 Filter/Clipping/ARB Settings

[:SOURce<hw>]:BB:TDSCdma:CLIPping:LEVel <Level> .. 93
[:SOURce<hw>]:BB:TDSCdma:CLIPping:MODE ... 94
[:SOURce<hw>]:BB:TDSCdma:CLIPping:STATe .. 94
[:SOURce<hw>]:BB:TDSCdma:FILTer:TYPE .. 94
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:APCO25 .. 95
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:COSine .. 95
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:GAUSs .. 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:LPASs .. 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:LPASSEVM ... 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:PGAuss .. 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:RCOSine ... 96
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:SPHase .. 97
[:SOURce<hw>]:BB:TDSCdma:SLENgth .. 97

[:SOURce<hw>]:BB:TDSCdma:CLIPping:LEVel <Level>

Sets the limit for clipping.

This value indicates at what point the signal is clipped. It is specified as a percentage, relative to the highest level. 100% indicates that clipping does not take place.

Parameters:

<Level> integer

Range: 1 to 100
Increment: 1
*RST: 100
Default unit: PCT

Example:

BB:TDSC:CLIP:LEV 80
sets the limit for level clipping to 80% of the maximum level.
BB:TDSC:CLIP:STAT ON
activates level clipping.
Remote-Control Commands

[:SOURce<hw>]:BB:TDSCdma:CLIPping:MODE <Mode>
The command sets the method for level clipping (Clipping).

Parameters:

<Mode>
VECTor | SCALar

VECTor
The reference level is the amplitude | i+jq |.

SCALar
The reference level is the absolute maximum of the I and Q values.

*RST: VECTor

Example:
BB:TDSC:CLIP:MODE VECT
sets the amplitude as reference level.

Manual operation: See "Clipping Level" on page 27

[:SOURce<hw>]:BB:TDSCdma:CLIPping:STATe <State>
The command activates level clipping (Clipping). The value is defined with the command BB:TDSCdma:CLIPping:LEVel, the mode of calculation with the command BB:TDSCdma:CLIPping:MODE.

Parameters:

<State>
0 | 1 | OFF | ON

*RST: OFF
Default unit: OFF

Example:
BB:TDSC:CLIP:STAT ON
activates level clipping

Manual operation: See "Clipping Mode" on page 27

[:SOURce<hw>]:BB:TDSCdma:FILTer:TYPE <Type>
The command selects the filter type.

Parameters:

<Type>
RCOSine | COSine | GAUSs | LGAuss | CONE | COF705 | COEQualizer | COFequalizer | C2K3x | APCO25 | SPHase | RECTangle | PGAuss | LPASs | DIRac | ENPShape | EWPSShape | LPASSEVM

*RST: RCOSine

Example:
BB:TDSC:FILT:TYPE RCOS
sets the filter type RCOSine.

Manual operation: See "Filter" on page 24
[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:APCO25 <Apco25>

The command sets the roll-off factor for filter type APCO25.

Parameters:

- `<Apco25>`: float
 - Range: 0.05 to 0.99
 - Increment: 0.01
 - *RST*: 0.2

Example:

```
BB:TDSC:FILT:PAR:APCO25 0.2
```

sets the roll-off factor to 0.2 for filter type APCO25.

Manual operation: See "Roll Off Factor or BxT" on page 24

[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:COSine <Cosine>

Sets the roll-off factor for the Cosine filter type.

Parameters:

- `<Cosine>`: float
 - Range: 0 to 1
 - Increment: 0.01
 - *RST*: 0.35

Example:

```
BB:TDSC:FILT:PAR:COS 0.35
```

sets the roll-off factor to 0.35 for filter type Cosine.

Manual operation: See "Roll Off Factor or BxT" on page 24

[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:GAUSs <Gauss>

The command sets the B x T for the Gauss filter type.

Parameters:

- `<Gauss>`: float
 - Range: 0.15 to 2.5
 - Increment: 0.01
 - *RST*: 0.5

Example:

```
BB:TDSC:FILT:PAR:GAUS 0.5
```

sets B x T to 0.5 for the Gauss filter type.

Manual operation: See "Roll Off Factor or BxT" on page 24

[:SOURce<hw>]:BB:TDSCdma:FILTer:PARameter:LPASs <LPass>

Sets the cut off frequency factor for the Lowpass (ACP Opt.) filter type.
Remote-Control Commands

Filter/Clipping/ARB Settings

Parameters:

Parameter: \(<\text{LPass}>\)
- Type: float
- Range: 0.05 to 2
- Increment: 0.01
- RST: 0.5

Example: \(\text{BB:TDSC:FILT:PAR:LPAS 0.5}\)
the cut of frequency factor is set to 0.5.

Manual operation: See “Cut Off Frequency Factor” on page 25

\[[:\text{SOURce<hw>:}]:\text{BB:TDSCdma:FILTer:PARameter:LPASSEVM}<\text{LPassEvm}>\]
Sets the cut off frequency factor for the Lowpass (EVM Opt.) filter type.

Parameters:

Parameter: \(<\text{LPassEvm}>\)
- Type: float
- Range: 0.05 to 2
- Increment: 0.01
- RST: 0.5

Example: \(\text{BB:TDSC:FILT:PAR:LPASSEVM 0.5}\)
the cut of frequency factor is set to 0.5.

Manual operation: See “Cut Off Frequency Factor” on page 25

\[[:\text{SOURce<hw>:}]:\text{BB:TDSCdma:FILTer:PARameter:PGAuss}<\text{PGauss}>\]
The command sets the B x T for the Pure Gauss filter type.

Parameters:

Parameter: \(<\text{PGauss}>\)
- Type: float
- Range: 0.15 to 2.5
- Increment: 0.01
- RST: 0.5

Example: \(\text{BB:TDSC:FILT:PAR:GAUS 0.5}\)
sets B x T to 0.5 for the Pure Gauss filter type.

Manual operation: See “Roll Off Factor or BxT” on page 24

\[[:\text{SOURce<hw>:}]:\text{BB:TDSCdma:FILTer:PARameter:RCOSine}<\text{RCosine}>\]
The command sets the roll-off factor for the Root Cosine filter type.

Parameters:

Parameter: \(<\text{RCosine}>\)
- Type: float
- Range: 0 to 1
- Increment: 0.01
- RST: 0.22
Remote-Control Commands

Example:
\[\text{BB:TDSC:FILT:PAR:RCOS 0.22} \]
sets the roll-off factor to 0.22 for filter type Root Cosine.

Manual operation:
See "Roll Off Factor or BxT" on page 24

\[[:\text{SOURce<hw>:}}\text{BB:TDSCdma:FILTer:PARameter:SPHase <SPhase}> \]
The command sets the B x T for the Split Phase filter type.

Parameters:
\(<\text{SPhase}>\) float
Range: 0.15 to 2.5
Increment: 0.01
*RST: 2

Example:
\[\text{BB:TDSC:FILT:PAR:SPH 0.5} \]
sets B x T to 0.5 for the Split Phase filter type.

Manual operation:
See "Roll Off Factor or BxT" on page 24

\[[:\text{SOURce<hw>:}}\text{BB:TDSCdma:SLENgth <SLength}> \]
The command sets the sequence length of the arbitrary waveform component of the TD-SCDMA signal in the number of frames. This component is calculated in advance and output in the arbitrary waveform generator. It is added to the realtime signal components.

Parameters:
\(<\text{SLength}>\) integer
Range: 1 frame to 5000 frames
*RST: 1 frame

Example:
\[\text{BB:TDSC:SLEN 10} \]
sets the sequence length to 10 frames.

Manual operation:
See "Sequence Length ARB" on page 28

5.3 Trigger Settings

The trigger settings are available for R&S SMx and R&S AMU instruments only.

\text{EXTernal<ch>}

The numeric suffix to \text{EXTernal<ch>} distinguishes between the external trigger via the TRIGGER 1 (suffix 1) and TRIGGER 2 (suffix 2) connector.
Remote-Control Commands

`[:SOURce<hw>:]:BB:TDSCdma:TRIGger:ARM:EXECute`.. 98

For trigger modes "Armed Auto" and "Armed Retrigger", stops the signal generation until subsequent trigger event occurs.

Example:

```
BB:TDSC:TRIG:ARM:EXEC
```

stops signal generation for trigger modes "Armed Auto" and "Armed Retrigger".

Usage: Event

Manual operation: See "Arm" on page 21

`[:SOURce<hw>:]:BB:TDSCdma:TRIGger:EXECute`.. 98

The command executes a trigger. The internal trigger source must be selected using the command

```
SOUR:BB:TDSC:TRIG:SOUR INT
```

and a trigger mode other than "AUTO" must be selected using the command

```
SOUR:BB:TDSC:TRIG:SEQ
```

Example:

```
BB:TDSC:TRIG:SOUR INT
```

sets internal triggering.

```
BB:TDSC:TRIG:SEQ RETR
```

sets Retrigger mode, i.e. every trigger event causes signal generation to restart.

```
BB:TDSC:TRIG:EXEC
```

executes a trigger.

Usage: Event

Manual operation: See "Execute Trigger" on page 20

`[:SOURce<hw>:]:BB:TDSCdma:TRIGger:EXTernal:SYNChronize:OUTPut`............................98

(enabled for "Trigger Source" External)

Enables/disables output of the signal synchronous to the external trigger event.
Parameters:

- **<Output>**
 - Values: 0 | 1 | OFF | ON
 - *RST:* 1

Example:

```
BB:TDSC:TRIG:SOUR EXT
sets external triggering.
BB:TDSC:TRIG:EXT:SYNC:OUTP ON
enables synchronous output to external trigger
```

Manual operation:

See "Sync. Output to External Trigger" on page 32

[:SOURce<hw>]:BB:TDSCdma:TRIGger:OBASeband:DELay <Delay>

The command specifies the trigger delay (expressed as a number of chips) for triggering by the trigger signal from the second path.

Parameters:

- **<Delay>**
 - Type: float
 - Range: 0 chips to 65535 chips
 - Increment: 0.01 chip
 - *RST:* 0 chips

Example:

```
BB:TDSC:TRIG:SOUR OBAS
sets for path A the internal trigger executed by the trigger signal from the second path (path B).
BB:TDSC:TRIG:OBAS:DEL 50
sets a delay of 50 symbols for the trigger.
```

Manual operation:

See "Trigger Delay" on page 33

[:SOURce<hw>]:BB:TDSCdma:TRIGger:OBASeband:INHibit <Inhibit>

The command specifies the number of chips by which a restart is to be inhibited following a trigger event. This command applies only for triggering by the second path.

Parameters:

- **<Inhibit>**
 - Type: integer
 - Range: 0 chips to (2^26-1) chips
 - Increment: 1 chip
 - *RST:* 0 chips

Example:

```
BB:TDSC:TRIG:SOUR OBAS
sets for path A the internal trigger executed by the trigger signal from the second path (path B).
BB:TDSC:TRIG:INH 200
sets a restart inhibit for 200 chips following a trigger event.
```

Manual operation:

See "Trigger Inhibit" on page 34
[:SOURce<hw>]:BB:TDSCdma:TRIGger:RMODE?

The command queries the current status of signal generation for all trigger modes with TD-SCDMA modulation on.

Return values:

- **RUN**: the signal is generated. A trigger event occurred in the triggered mode.
- **STOP**: the signal is not generated. A trigger event did not occur in the triggered modes, or signal generation was stopped by the command :BB:TDSC:TRIG:ARM:EXECute (armed trigger modes only).

Example:

BB:TDSC:TRIG:MODE ARET
selects the Armed_Retrigger mode.

BB:TDSC:TRIG:RMOD?
queries the current status of signal generation.

Response: RUN
the signal is generated, an external trigger was executed.

Usage:

Query only

Manual operation: See "Running/Stopped" on page 31

[:SOURce<hw>]:BB:TDSCdma:TRIGger:SLENth <SLength>

Sets the length of the signal sequence to be output in the "Single" trigger mode (SOUR:BB:TDSC:SEQ SING). The unit is defined with command SOUR:BB:TDSC:TRIG:SLUNIT. It is then possible to output deliberately just part of the frame, an exact sequence of the frame, or a defined number of repetitions of the frame.

Parameters:

- **<SLength>** integer
 - Range: 1 to max
 - *RST: 12800

Example:

BB:TDSC:SEQ SING
sets trigger mode Single.
BB:TDSC:TRIG:SLUN CHIP
sets unit chips for the entry of sequence length.
BB:TDSC:TRIG:SLEN 200
sets a sequence length of 200 chips. The first 200 chips of the current frame will be output after the next trigger event.

Manual operation: See "Signal Duration" on page 31
The command defines the unit for the entry of the length of the signal sequence (SOUR:BB:TDSC:TRIG:SLEN) to be output in the "Single" trigger mode (SOUR:BB:TDSC:SEQ SING).

Parameters:

<SlUnit> FRAMe | CHIP | SEQuence

*RST: SEQuence

Example:

BB:TDSC:SEQ SING
sets trigger mode Single.
BB:TDSC:TRIG:SLUN FRAM
sets unit frames for the entry of sequence length.
BB:TDSC:TRIG:SLEN 2
sets a sequence length of 2 frames. The current frame will be output twice after the next trigger event.

Manual operation: See "Signal Duration Unit" on page 31

Selects the trigger source.

Parameters:

<Source> INTernal|OBASeband|BEXTernal|EXTernal

INTernal manual trigger or *TRG.
EXTernal|BEXTernal trigger signal on the TRIGGER 1/2 connector.
OBASeband trigger signal from the other path

*RST: INTernal

Example:

SOURce1:BB:TDSCdma:TRIGger:SOURce EXTernal
sets external triggering via the TRIGGER 1 connector.

Manual operation: See "Trigger Source" on page 32

The command specifies the trigger delay (expressed as a number of chips) for external triggering.

Parameters:

<Delay> float

Range: 0 chips to 65535 chips
Increment: 0.01 chips
*RST: 0 chips
Example:

BB:TDCS:TRIG:SOUR EXT
sets an external trigger via the TRIGGER 1 connector.

BB:TDCS:TRIG:DEL 50
sets a delay of 50 symbols for the trigger.

Manual operation: See "Trigger Delay" on page 33

[:SOURce<hw>]:BB:TDCS:TRIGger[:EXTernal<ch>]:INHibit <Inhibit>

The command specifies the number of chips by which a restart is to be inhibited following a trigger event. This command applies only in the case of external triggering.

Parameters:

<Inhibit>
integer

Range: 0 chips to 67108863 chips
Increment: 1 chip
*RST: 0 chips

Example:

BB:TDCS:TRIG:SOUR EXT1
selects an external trigger via the TRIGGER 1 connector.

BB:TDCS:TRIG:INH 200
sets a restart inhibit for 200 chips following a trigger event.

Manual operation: See "Trigger Inhibit" on page 34

[:SOURce<hw>]:BB:TDCS:TRIGger:SEQuence <Sequence>

The command selects the trigger mode.
Parameters:
<Sequence>
AUTO | RETRigger | AAUTO | ARETrigger | SINGle

AUTO
The modulation signal is generated continuously.

RETRigger
The modulation signal is generated continuously. A trigger event (internal or external) causes a restart.

AAuto
The modulation signal is generated only when a trigger event occurs. After the trigger event the signal is generated continuously, signal generation is stopped with command
\[\text{SOUR:BB:TDSC:TRIG:ARM:EXEC}\]
and started again when a trigger event occurs.

ARETrigger
The modulation signal is generated only when a trigger event occurs. The device automatically toggles to RETRIG mode. Every subsequent trigger event causes a restart. Signal generation is stopped with command
\[\text{SOUR:BB:TDSC:TRIG:ARM:EXEC}\]
and started again when a trigger event occurs.

SINGle
The modulation signal is generated only when a trigger event occurs. After the trigger event, the signal is generated once to the set sequence length (\text{SOUR:BB:TDSC:TRIG:SLEN}). Every subsequent trigger event causes a restart.

*RST: AUTO

Example:
BB:TDSC:SEQ AAUT
sets the "Armed_auto" trigger mode; the device waits for the first trigger (e.g. with \(^*\text{TRG}\)) and then generates the signal continuously.

Manual operation:
See "Trigger Mode" on page 30

5.4 Marker Settings

This section lists the remote control commands, necessary to configure the markers.

\text{OUTPut<ch>}

The numeric suffix to OUTPut distinguishes between the available markers.

Only two markers are available for the R&S SMBV, i.e. the allowed values for the suffix are 1 or 2.

\[:\text{SOURce<hw>}:\text{BB:TDSCdma:TRIGger:OUTPut:DELay:FIXed}\] 104
\[:\text{SOURce<hw>}:\text{BB:TDSCdma:TRIGger:OUTPut<ch>:DELay}\] 104
\[:\text{SOURce<hw>}:\text{BB:TDSCdma:TRIGger:OUTPut<ch>:DELay:MAXimum?}\] 104
\[:\text{SOURce<hw>}:\text{BB:TDSCdma:TRIGger:OUTPut<ch>:DELay:MINimum?}\] 105
The command restricts the marker delay setting range to the current range. In this range the delay can be set without restarting the marker and signal. If a delay is entered in setting ON but is outside this range, the maximum possible delay is set and an error message is generated.

The numeric suffix in OUTPut has no significance for this command, since the setting always affects every marker.

Parameters:

- `<Fixed>`: 0 | 1 | OFF | ON
 - *RST:* OFF

Example:

```
BB:TDSC:TRIG:OUTP2:DEL 1600
```

sets a delay of 1600 chips for the corresponding marker signal.

Manual operation:

See "Marker x Delay" on page 35

The command queries the maximum marker delay for setting :BB:TDSC:TRIG:OUTP:DEL:FIX ON.

Return values:

- `<Maximum>`: float
Example:
BB:TDSC:TRIG:OUTP:DEL:FIX ON
restricts the marker signal delay setting range to the dynamic range.
BB:TDSC:TRIG:OUTP:DEL:MAX?
queries the maximum of the dynamic range.
Response: 20000
the maximum for the marker delay setting is 20000 chips.

Usage: Query only
Manual operation: See "Current Range without Recalculation" on page 35

[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:DELay:MINimum?
The command queries the minimum marker delay for setting :BB:TDSCdma:TRIGger:OUTPut: DELay:FIXed ON.

Return values:
Minimum float

Example:
BB:TDSC:TRIG:OUTP:DEL:FIX ON
restricts the marker signal delay setting range to the dynamic range.
BB:TDSC:TRIG:OUTP:DEL:MIN?
queries the minimum of the dynamic range.
Response: 0
the minimum for the marker delay setting is 0 symbols.

Usage: Query only
Manual operation: See "Current Range without Recalculation" on page 35

[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:MODE <Mode>
The command defines the signal for the selected marker output.
Parameters:

<Mode>

- **RFRame**: A marker signal is generated every 10 ms (traffic channel clock).
- **SFNR**: A marker signal is generated at the start of every SFN period (every 4096 frames).
- **CSPeriod**: A marker signal is generated at the start of each arbitrary waveform sequence (depending on the set sequence length). The marker signal is also generated if the signal contains no ARB.
- **USER**: A marker signal is generated at the beginning of every user-defined period. The period is defined with command `SOUR:BB:TDSC:TRIG:OUTP:PERiod`.
- **TRIGger**: A received internal or external trigger signal is output at the marker connector.

RST: RFRame

Example:

```
BB:TDSC:TRIG:OUTP2:MODE RFR
```

selects the traffic channel clock for the corresponding marker signal.

Manual operation: See "Marker Mode" on page 34

The command sets the number of chips in a period (ON time + OFF time) during which the marker signal in setting `SOURce:BB:TDSCdma:TRIGger:OUTPut:MODE RATio` on the marker outputs is ON.

Parameters:

- **<OnTime>**: integer
 - Range: 1 chips to 2^{24}-1 chips
 - Increment: 1 chips
 - *RST:* 1 chips

Example:

```
```

sets an ON time of 2000 chips for marker.

Manual operation: See "Marker Mode" on page 34
Remote-Control Commands

[:SOURce<hw>]:BB:TDSCdma:TRIGger:OUTPut<ch>:PERiod <Period>

The command sets the repetition rate for the signal at the marker outputs, expressed in terms of chips. The setting is only valid for selection "USER" in :BB:TDSC:TRIG:OUTP:MODE.

Parameters:
<Period> integer
Range: 1 chips to \(2^{32}-1\) chips
Increment: 1 chips
*RST: 12800 chips

Example:
BB:TDSC:TRIG:OUTP2:MODE USER
selects the user marker for the corresponding marker signal.
BB:TDSC:TRIG:OUTP2:PER 1600
sets a period of 1600 chips, i.e. the marker signal is repeated every 1600th chip.

Manual operation: See "Marker Mode" on page 34

5.5 Clock Settings

This section lists the remote control commands, necessary to configure the clock.

[:SOURce<hw>]:BB:TDSCdma:CLOCk:MODE <Mode>

Sets the type of externally supplied clock.
For two-path instruments, the only numerical suffix allowed for SOURce is 1, since the external clock source is permanently allocated to path A.

Parameters:
<Mode> CHIP | MCHip
*RST: CHIP

Example:
SOURce1:BB:TDSCdma:CLOCk:MODE MCHip
sets the type of externally supplied clock.

Manual operation: See "Clock Mode" on page 36

[:SOURce<hw>]:BB:TDSCdma:CLOCk:MULTiplier <Multiplier>

The command specifies the multiplier for clock type "Multiplied" (:BB:TDSCdma:CLOCk:MODE MCHip) in the case of an external clock source.
For two-path instruments, the only numerical suffix allowed for SOURce is 1, since the external clock source is permanently allocated to path A.

Parameters:

- **<Multiplier>** integer
 - Range: 1 to 64
 - Increment: 1
 - *RST: 4

Example:

```
SOURce1:BB:TDSCdma:CLOCk:SOURce EXTernal
selects the external clock source.
SOURce1:BB:TDSCdma:CLOCk:MODE MCHip
selects clock type "Multiplied", i.e. the supplied clock has a rate which is a multiple of the chip rate.
SOURce1:BB:TDSCdma:CLOCk:MULTiplier 12
the multiplier for the external clock rate is 12.
```

Manual operation: See "Clock Multiplier" on page 37

```
[:SOURce<hw>]:BB:TDSCdma:CLOCk:SOURce <Source>
```

The command selects the clock source.

For two-path instruments, selecting **EXTernal** is only possible for path A, since the external clock source is permanently allocated to path A. Selection **AINTernal** is only possible for path B.

Parameters:

- **<Source>**
 - INTernal | EXTernal | AINTernal

 INTernal
 - The internal clock reference is used.

 EXTernal
 - The external clock reference is supplied to the CLOCK connector. Commands :BB:TDSC:CLOCk:MODE and :MULTiplier are used to enter the type of the external clock.

 AINTernal
 - The clock source of path A is used for path B.
 - *RST: INTernal

Example:

```
BB:TDSC:CLOC:SOUR EXT
selects the external clock source. The clock is supplied via the CLOCK connector.
BB:TDSC:CLOC:MODE MCH
selects clock type "Multiplied", i.e. the supplied clock has a rate which is a multiple of the chip rate.
BB:TDSC:CLOC:MULT 12
the multiplier for the external clock rate is 12.
```

Manual operation: See "Clock Source" on page 36
[:SOURce<hw>]:BB:TDSCdma:CLOCk:SYNChronization:EXECute

(for R&S SMBV only)
Performs automatically adjustment of the instrument's settings required for the syn-
chronization mode, set with the command BB:TDSC:CLOC:SYNC:MODE.

Example:
BB:TDSC:CLOC:SYNC:MODE MAST
the instrument is configured to work as a master one.
BB:TDSC:CLOC:SYNC:EXEC
all synchronization's settings are adjusted accordingly.

Usage:
Event

Manual operation: See "Set Synchronization Settings" on page 36

[:SOURce<hw>]:BB:TDSCdma:CLOCk:SYNChronization:MODE <Mode>

(for R&S SMBV only)
Selects the synchronization mode.

This parameter is used to enable generation of very precise synchronous signal of sev-
eral connected R&S SMBVs.

Note: If several instruments are connected, the connecting cables from the master
instrument to the slave one and between each two consecutive slave instruments must
have the same length and type. Avoid unnecessary cable length and branching points.

Parameters:

<Mode>
NONE | MASTer | SLAVe

NONE
The instrument is working in stand-alone mode.

MASTer
The instrument provides all connected instrument with its syn-
chronization (including the trigger signal) and reference clock
signal.

SLAVe
The instrument receives the synchronization and reference clock
signal from another instrument working in a master mode.

*RST: NONE

Example:
BB:TDSC:CLOC:SYNC:MODE MAST
the instrument is configured to work as a master one.

5.6 Predefined Settings

You can generate predefined test settings for cell 1: These predefined settings enable the creation of highly complex scenarios with just a few keystrokes. The settings take effect only after execution of command `BB:TDScdma:PPARameter:EXECute`.

```
[:SOURce<hw>]:BB:TDScdma:DOWN|UP:PPARameter:DPCH:COUN1t..............................110
[:SOURce<hw>]:BB:TDScdma:DOWN|UP:PPARameter:DPCH:CRESt.............................. 110
[:SOURce<hw>]:BB:TDScdma:DOWN|UP:PPARameter:DPCH:SFACtor............................111
[:SOURce<hw>]:BB:TDScdma:DOWN|UP:PPARameter:EXECute..................................... 111
[:SOURce<hw>]:BB:TDScdma:DOWN:PPARameter:PCCPch:STATe................................ 111
```

```
[:SOURce<hw>]:BB:TDScdma:DOWN|UP:PPARameter:DPCH:COUN <Count>
```

This command sets the number of activated DPCHs. The minimum number is one and the maximum number depends on the spreading factor:

Max. No. DPCH = 3 x Spreading Factor

Parameters:
- `<Count>`
 - integer
 - Range: 1 to 48
 - *RST: 12

Example:

```
```

Manual operation: See "Number of Dedicated Channels" on page 38

```
[:SOURce<hw>]:BB:TDScdma:DOWN|UP:PPARameter:DPCH:CRESt <Crest>
```

This commands selects the desired range for the crest factor of the test scenario. The crest factor of the signal is kept in the desired range by automatically setting appropriate channelization codes and timing offsets. The setting takes effect only after execution of command `SOURce:BB:TDSC:DOWN | UP:PPARameter:EXEC`.

Parameters:
- `<Crest>`
 - MINimum | AVERage | WORSt

MINimum
The crest factor is minimized. The channelization codes are distributed uniformly over the code domain. The timing offsets are increased by 3 per channel.

AVERage
An average crest factor is set. The channelization codes are distributed uniformly over the code domain. The timing offsets are all set to 0.

WORSt
The crest factor is set to an unfavorable value (i.e. maximum). The channelization codes are assigned in ascending order. The timing offsets are all set to 0.

*RST: * MINimum
Example: \texttt{BB:TDSC:DOWN:PPAR:DPCH:CRES WORS}
sets the crest factor to an unfavorable value.

Manual operation: See "Crest Factor" on page 38

\texttt{[:SOURce<hw>:]BB:TDSCdma:DOWN|UP:PPAR:DPCH:SFACtor <SFactor>}
This command sets the spreading factor for the DPCHs.

Max. No. DPCH = 3 x Spreading Factor

Parameters:
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\texttt{<SFactor>} & 1 & 2 & 4 & 8 & 16 \\
\hline
\texttt{*RST:} & 16 \\
\hline
\end{tabular}

Example: \texttt{BB:TDSC:DOWN | UP:PPAR:DPCH:SFAC 16}
sets the spreading factor for the DPCH.

Manual operation: See "Spreading Factor Dedicated Channels" on page 38

\texttt{[:SOURce<hw>:]BB:TDSCdma:DOWN|UP:PPAR:EXECute}
This command presets the channel table of cell 1 with the parameters defined by the \texttt{PPAR:DPCH} commands. Scrambling Code 0 is automatically selected.

Example: \texttt{BB:TDSC:DOWN:PPAR:EXEC}
configures the signal sequence as defined by the :BB:TDSC: \texttt{PPAR:DPCH} commands.

Usage: Event

Manual operation: See "Accept" on page 38

\texttt{[:SOURce<hw>:]BB:TDSCdma:DOWN:PPAR:PCCPch:STATe <State>}
This command defines, if P-CCPCH is used in the scenario or not. If P-CCPCH is used, both P-CCPCHs are activated in slot 0 with spreading code 0+1.

Parameters:
\begin{tabular}{|c|c|c|c|}
\hline
\texttt{<State>} & 0 & 1 & OFF & ON \\
\hline
\texttt{*RST:} & ON \\
\hline
\end{tabular}

Example: \texttt{BB:TDSC:DOWN:PPAR:PCCP:STAT ON}
selects if P-CCPCH is used in the scenario or not.

Manual operation: See "Use PCCPCH (Downlink Slot 0, code 0+1)" on page 38

5.7 Cell Settings

\texttt{CELL<st>}

Remote-Control Commands

TD-SCDMA, incl TD-SCDMA enhanced features

Operating Manual 1171.5260.12 ─ 15

Cell Settings

Value Range [1] [2] [3] [4]

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:UPPTs:MODE .. 112
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:DWPTs:MODE 112
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:UPPTs:POWer ... 112
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:DWPTs:POWer 112
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:UPPTs:STATe? 112
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:DWPTs:STATe? 112
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:MCODE? 113
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:PROTation 113
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SCODe ... 114
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SCODe:STATe 114
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SOInt ... 114
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SUCode 115
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:TDELAY 115
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:USERS ... 116

The command selects whether to use the pilot time slot and its power or not. In case of "Auto" and "On", the DwPTS/UpPTS is used. This is indicated in the "Select Slot in Subframe to Configure" graph.

Parameters:

<Mode> AUTO | ON | OFF
*RST: AUTO

Example: BB:TDSC:DOWN:CELL1:DWPT:MODE ON
the DwPTS is used.

Manual operation: See "DwPTS Mode/ UpPTS Mode" on page 40

Sets the power of the downlink/uplink pilot time slot.

Parameters:

<Power> float
Range: -80 to 10
Increment: 0.01
*RST: 0

sets the power of the downlink pilot slot.

Manual operation: See "DwPTS Power/ UpPTS Power" on page 40
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:UPPTs:STATe?
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:DWPTs:STATe?

The command queries the state of the downlink/uplink pilot time slot.

Return values:

<table>
<thead>
<tr>
<th><State></th>
<th>0</th>
<th>1</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
</table>

*RST: ON

Example: BB:TDSC:DOWN:CELL1:DWPT:STAT?
queries the state of the downlink pilot slot.

Usage: Query only

Manual operation: See "DwPTS Mode/ UpPTS Mode" on page 40

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:MCODE?

The command queries the basic midamble code id. The value is set automatically by the change of the scrambling code parameter (it is equal to scrambling code).

Return values:

<table>
<thead>
<tr>
<th><MCode></th>
<th>integer</th>
</tr>
</thead>
</table>

Range: 0 to 127

*RST: 0

Example: BB:TDSC:DOWN:CELL1:SCOD 15
queries the basic midamble code id.

Usage: Query only

Manual operation: See "Basic Midamble Code ID" on page 40

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:PROTation <PRotation>

The command selects the phase rotation for the downlink pilots.

Parameters:

<table>
<thead>
<tr>
<th><PRotation></th>
<th>AUTO</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
</table>

AUTO
Sets the default phase rotation sequence according to the presence of the P-CCPCH.

S1
There is a P-CCPCH in the next four subframes.

S2
There is no P-CCPCH in the next four subframes.

*RST: AUTO

Example: BB:TDSC:DOWN:CELL1:PROT AUTO
sets the phase rotation to AUTO.

Manual operation: See "Phase Rotation" on page 40
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SCODE <SCode>

Sets the scrambling code. The scrambling code is used for transmitter-dependent scrambling of the chip sequence.

Parameters:

- `<SCode>`: integer
 - Range: 0 to 127
 - *RST:* 0

Example:

```
BB:TDSC:DOWN:CELL1:SCOD 15
```

sets the scrambling code for cell 1.

Manual operation: See "Scrambling Code" on page 39

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SCODE:STATe <State>

The command activates or deactivates the scrambling code. The scrambling code is deactivated, for example, for test purposes.

Parameters:

- `<State>`: 0 | 1 | OFF | ON
 - *RST:* ON

Example:

```
BB:TDSC:DOWN:CELL1:SCOD:STAT ON
```

activates the scrambling code for cell 1.

Manual operation: See "Use (Scrambling Code)" on page 39

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SDCode?

The command queries the SYNC-DL code. The SYNC-DL code is transmitted in the DwPTS to synchronize the mobile station to the base station. The SYNC-DL code is derived from the scrambling code and the basic midamble code ID.

Return values:

- `<SdCode>`: integer
 - Range: 0 to 31
 - *RST:* 0

Example:

```
BB:TDSC:DOWN:CELL1:SDC?
```

queries the SYNC-DL code.

Usage: Query only

Manual operation: See "SYNC-DL Code" on page 40

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SPOint <SPoint>

Sets the switching point between the uplink slots and the downlink slots in the frame.
Remote-Control Commands

Parameters:
- **<SPoint>**
 - integer
 - Range: 1 to 6
 - *RST:* 3

Example:
```
BB:TDSC:DOWN:CELL1:SPO 4
```
sets the switching point in the frame.

Manual operation: See "Switching Point" on page 41

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:STATe <State>

The command activates and deactivates the specified cell.

Parameters:
- **<State>**
 - 0 | 1 | OFF | ON
 - *RST:* OFF

Example:
```
BB:TDSC:DOWN:CELL1:STAT ON
```
activates cell 1

Manual operation: See "Cell On / Cell Off" on page 23

Sets the SYNC-UL code. The SYNC-UL code is transmitted in the UpPTS to synchronize the base station to the mobile station.

Parameters:
- **<SuCode>**
 - integer
 - Range: 0 to 255
 - *RST:* 0

Example:
```
BB:TDSC:DOWN:CELL1:SUC 120
```
sets the SYNC-UL code.

Manual operation: See "SYNC-UL Code" on page 41

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:TDELay <TDelay>

Sets the time shift of the selected cell compared to cell 1 in chips.

The command is only valid for cell 2, 3 and 4.

Parameters:
- **<TDelay>**
 - integer
 - Range: 0 to 19200
 - *RST:* 0

Example:
```
BB:TDSC:DOWN:CELL2:TDEL 100
```
'shifts cell 2 by 100 chips compared to cell 1.

Manual operation: See "Time Delay" on page 41
Remote-Control Commands

1.5 Enhanced Channels of Cell 1

[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:USERS <Users>

The command sets the total number of users of the cell.

Parameters:

<Users> 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16
*RST: 16

Example: BB:TDSC:DOWN:CELL1:USER 4

sets the total number of users.

Manual operation: See "Number of Users" on page 41

5.8 Enhanced Channels of Cell 1

CELL<st>

Value Range CELL1

DTCH<ch>

Value Range 1 .. 7

Remote-Control Commands

Enhanced Channels of Cell 1

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:BPFRame?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SCSMode?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SFOrmat?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SLOTstate<ch0>

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:TYPE?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SCSMode?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SFOrmat?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SLOTstate<ch0>?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:TYPE?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SCSMode?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SFOrmat?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SLOTstate<ch0>?

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:TYPE?

<SsPattern>

Sets the sync shift pattern. The pattern length is 21 bits.

Parameters:

<SsPattern> 21 bits

*RST: #H0,3

Example:

BB:TDSC:DOWN:CELL1:ENH:DCH:PLCC:SSP #HAS,8

sets the sync shift pattern.

Manual operation: See "Sync Shift Pattern" on page 53

<TpcPattern>

Sets the TPC pattern. The pattern length is 21 bits.
Parameters:
<TpcPattern> 21 bits
*RST: #H0,3

sets the TPC pattern

Manual operation: See "TPC Pattern" on page 54

Queries the transmission time interval.

Return values:
<TtInterval> 5MS | 10MS | 20MS | 40MS | 80MS

queries the TTI value
Response: 5ms

Usage: Query only

Manual operation: See "Transmission Time Interval (TTI) – RMC PLCCH" on page 53

<AnPattern>
Sets the ACK/NACK Pattern. The pattern has a maximal length of 36 bits; a "1" corresponds to ACK, a "0" to NAK.

Parameters:
<AnPattern> 36 bits
*RST: #H7,3

sets the ACK/NACK pattern

Manual operation: See "ACK/NAK Pattern" on page 55

<Modulation>
Sets the CQI modulation.

Parameters:
<Modulation> QPSK | QAM16 | QAM64
*RST: QPSK

sets the CQI modulation

Manual operation: See "CQI Modulation" on page 55

Sets the CQI value.

Parameters:
<Value>
integer
Range: 0 to 63
*RST: 0

Example:
sets the CQI value

Manual operation: See "CQI Value" on page 55

Queries the transmission time interval.

Return values:
<TTIval>
5MS | 10MS | 20MS | 40MS | 80MS

Example:
queries the TTI
Response: 5ms

Usage: Query only

Manual operation: See "Transmission Time Interval (TTI) – RMC HS-SICH" on page 54

The command sets the layer in the coding process at which bit errors are inserted.

Parameters:
<Layer>
TRANsport | PHYSical
*RST: TRANsport

Example:
inserts the bit errors in the transport layer.

Manual operation: See "Insert Errors On" on page 55

Sets the bit error rate.
Parameters:
<Rate>
float
Range: 1E-7 to 0.5
Increment: 1E-7
*RST: 0.001

Example:
sets the bit error rate.

Manual operation: See "Bit Error Rate" on page 55

<State>
The command activates or deactivates bit error generation.

Parameters:
<State>
0 | 1 | OFF | ON
*RST: OFF

Example:
activates the bit error generation.

Manual operation: See "State (Bit Error)" on page 55

<Rate>
Sets the block error rate.

Parameters:
<Rate>
float
Range: 1E-4 to 0.5
Increment: 1E-4
*RST: 0.1

Example:
sets the block error rate.

Manual operation: See "Block Error Rate" on page 56

<State>
The command activates or deactivates block error generation. The CRC checksum is determined and then the last bit is inverted at the specified error probability in order to simulate an invalid signal.

Parameters:
<State>
0 | 1 | OFF | ON
*RST: OFF
Example:
```
```
activates block error generation.

Manual operation:
See “State (Block Error)” on page 56

[[:SOURce<hw>:]BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:BPFRame?]

The command queries the data bits in the DPDCH component of the DPCH frame at physical level. The value depends on the slot format.

Return values:
- `<BpFrame>`: string

Example:
```
BB:TDSC:DOWN:CELL1:ENH:DCH:BPFR?
```
queries the data bits in the DPDCH component of the DPCH frame at physical level.

Usage:
Query only

Manual operation:
See “Data Bits Per Frame (10 ms)” on page 49

Sets the number of channels to be used.

The number of time slots is set with the command `BB:TDSC:DOWN|UP:CELL1:ENH:DCH:TSCount`.

Parameters:
- `<CCount>`: integer
 - Range: 1 to 16
 - *RST:* 1(uplink), 2(downlink)

Example:
```
```
sets two channels

Manual operation:
See “Number of Channels (DCH)” on page 48

Sets the type (length) of the CRC.

Parameters:
- `<CrcSize>`: NONE | 8 | 12 | 16 | 24
 - *RST:* 16(DTCH), 12(DCCH)

Example:
```
```
queries the type (length) of the CRC.

Manual operation:
See “Size Of CRC” on page 52
[:SOURce<hw>:]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH:DATA <Data>

The command selects the data source for the specified channel.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:
<Data> PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLIS|t |
 ZERO | ONE | PATTern

PNXX
PRBS data as per CCITT with period lengths between 29-1 and 223-1 is generated internally.

DLIS|t
Internal data from a programmable data list is used. The data list can be generated by the Data Editor or generated externally. Data lists are selected in the "Select Data List" field. The data list is selected with the command

ZERO | ONE
Internal 0 and 1 data is used.

PATTern
A user-definable bit pattern with a maximum length of 64 bits is generated internally. The bit pattern is defined in the "Pattern entry field". The bit pattern is selected with the command

*RST: PN9

Example:
selects PN9 as the data source of the transport channel.

Manual operation: See "Data List Management..." on page 18

The command selects the data list for the DLIS|t data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user’s choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:
<DSelect> string
Example:
```
```
selects the Data Lists data source for the transport channel.
```
MMEM:CDIR "<root>Lists"
```
selects the directory for the data lists.
```
"tdscdma_1"
```
selects file `tdscdma_1` as the data source. This file must be in the specified directory and it must have the file extension `.dm_iqd`.

Manual operation: See "Data List Management..." on page 18

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH:
DATA:PATTern <Pattern>
```
Sets the bit pattern for the PATTern selection. The first parameter determines the bit pattern (choice of hexadecimal, octal, or binary notation). The second specifies the number of bits to use. The maximum length is 64 bits.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:
```
<Pattern> 64 bits
```
```
*RST: #H0,1
```

Example:
```
```
defines the bit pattern.

Manual operation: See "Data Source" on page 50

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH:
EPRotection <EProtection>
```
Sets the error protection.

Parameters:
```
<EProtection> NONE | TURBo3 | CON2 | CON3
```
```
*RST: CON3
```

Example:
```
```
sets the error protection.

Manual operation: See "Error Protection" on page 52

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH:
IONE <lOne>
```
The command activates or deactivates the channel coding interleaver state 1 of the transport channel. Interleaver state 1 can be set independently in each TCH. Activation does not change the symbol rate.
Parameters:
<One>
0 | 1 | OFF | ON
*RST: ON

Example:
BB:TDSC:DOWN:CELL1:ENH:DCH:DTCH:IONE ON
activates the channel coding interleaver state 1 of the transport channel.

Manual operation: See "Interleaver 1 State" on page 52

The command activates or deactivates the channel coding interleaver state 2 off all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.

Parameters:
<ITwo>
0 | 1 | OFF | ON
*RST: ON

Example:
BB:TDSC:DOWN:CELL1:ENH:DCH:DTCH:ITWO ON
activates the channel coding interleaver state 2 of all the transport channel.

Manual operation: See "Interleaver 2 State" on page 52

Sets the rate matching.

Parameters:
<RmAttribute>
integer
Range: 16 to 1024
*RST: 256

Example:
sets the rate matching.

Manual operation: See "Rate Matching Attribute" on page 52

Sets the state of the transport channel.

Parameters:
<State>
0 | 1 | OFF | ON
*RST: depends on channel
Example: \texttt{BB:TDSC:DOWN:CELL1:ENH:DCH:DTCH:STAT ON} enables the transport channel.

Manual operation: See "DTCH On/DCCH On" on page 50

\texttt{[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH: TBCount <TbCount>}

Sets the number of transport blocks for the TCH.

Parameters:
\begin{itemize}
 \item \texttt{<TbCount>} \texttt{integer}
 \item Range: 1 to 24
 \item *RST: 1
\end{itemize}

Example: \texttt{BB:TDSC:DOWN:CELL1:ENH:DCH:DTCH:TBC 2} sets the number of transport blocks for the TCH.

Manual operation: See "Transport Blocks" on page 51

\texttt{[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH: TBSize <TbSize>}

Sets the size of the transport block at the channel coding input.

Parameters:
\begin{itemize}
 \item \texttt{<TbSize>} \texttt{integer}
 \item Range: 0 to 4096
 \item *RST: 244(DTCH), 100(DCCH)
\end{itemize}

Example: \texttt{BB:TDSC:DOWN:CELL1:ENH:DCH:DTCH:TBS 4096} sets the size of transport block of the channel coding input.

Manual operation: See "Transport Block Size" on page 51

\texttt{[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:DTCH<ch>|DCCH: TTINterval <TtInterval>}

Sets the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Parameters:
\begin{itemize}
 \item \texttt{<TtInterval>} \texttt{5MS | 10MS | 20MS | 40MS}
 \item *RST: 20MS(DTCH), 40MS(DCCH)
\end{itemize}

Example: \texttt{BB:TDSC:DOWN:CELL1:ENH:DCH:DTCH:TTIN 40MS} sets the number of frames into which a TCH is divided.

Manual operation: See "Transport Time Interval" on page 51
The command queries the resource units on the physical layer needed to generate the selected channel.

Return values:
- `<RupLayer>`: string

Example:
```
BB:TDSC:DOWN:CELL1:ENH:DCH:RUPL?
```
queries the resource units on the physical layer needed to generate the selected channel.

Usage: Query only

Manual operation: See "Resource Units On Physical Layer" on page 47

The command sets the spreading code selection mode for the used transport channels.

Parameters:
- `<ScsMode>`: AUTO | USER
 RST: AUTO

Example:
```
BB:TDSC:DOWN:CELL1:ENH:DCH:SCS AUTO
```
queries the spreading code.

Usage: See "Spreading Code Selection for Enhanced Channels" on page 48

The command queries the slot format of the selected channel. A slot format defines the complete structure of a slot made of data and control fields and includes the symbol rate. The slot format (and thus the symbol rate, the pilot length, and the TFCI State) depends on the coding type selected.

Return values:
- `<SFormat>`: string

Example:
```
BB:TDSC:DOWN:CELL1:ENH:DCH:SFOR?
```
queries the channel coding type.

Usage: Query only

Manual operation: See "Slot Format" on page 49

Queries the state of the slots off cell 1 used to transmit the transport channel.
Enhanced Channels of Cell 1

<table>
<thead>
<tr>
<th>Remote-Control Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td><SlotState></td>
</tr>
<tr>
<td>*RST:</td>
</tr>
<tr>
<td>Manual operation:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activates or deactivates the enhanced state for the DCH channel coding.</td>
</tr>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td><State></td>
</tr>
<tr>
<td>*RST:</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Manual operation:</td>
</tr>
</tbody>
</table>

| [:SOURce<hw>:]BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:TSCount <TsCount> |
|-----------------------------|
| Sets the number of time slots to be used. |
| Parameters: |
<TsCount>	integer
Range:	1 to 5
*RST:	1
Manual operation:	See "Number of Time Slots (DCH)" on page 48

| [:SOURce<hw>:]BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:TYPE <Type> |
|-----------------------------|
| The command sets the channel coding type. |
| Parameters: |
<Type>	RMC12K2	RMC64K	RMC144K	RMC384K	RMC2048K	HRMC526K	HRMC730K	UP_RMC12K2	UP_RMC64K	UP_RMC144K	UP_RMC384K	HSDPA	HSUPA	HS_SICH	PLCCH	USER	USER
*RST:	RMC12K2																
Manual operation:	See "Coding Type" on page 46																
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:BPFRame?

The command queries the data bits in the DPDCH component of the DPCH frame at physical level. The value depends on the slot format.

Return values:
<BpFrame> string

queries the data bits in the DPDCH component of the DPCH frame at physical level.

Usage: Query only
Manual operation: See "Data Bits Per Frame (10 ms)" on page 45

The command queries the type (length) of the CRC.

Return values:
<CrcSize> NONE | 8 | 12 | 16 | 24

queries the type (length) of the CRC.

Usage: Query only
Manual operation: See "Size Of CRC" on page 52

The command selects the data source for the specified channel.
For the traffic channels, this value is specific for the selected radio configuration.
Remote-Control Commands

Parameters:

- **<Data>**
 - PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISl | ZERO | ONE | PATTern

- **PNxx**
 PRBS data as per CCITT with period lengths between 2^9-1 and $2^{23}-1$ is generated internally.

- **DLISl**
 Internal data from a programmable data list is used. The data list can be generated by the Data Editor or generated externally. Data lists are selected in the "Select Data List" field. The data list is selected with the command `BB:TDSC:DOWN:CELL1:ENH:BCH:DTCH:DATA:DSEL <data list name>.

- **ZERO | ONE**
 Internal 0 and 1 data is used.

- **PATTern**
 A user-definable bit pattern with a maximum length of 64 bits is generated internally. The bit pattern is defined in the "Pattern entry field". The bit pattern is selected with the command `BB:TDSC:DOWN:CELL1:ENH:BCH:DTCH:DATA:PATT <bit pattern>`.

*RST: PN9

Example:

Manual operation: See "Data List Management..." on page 18

```
```

The command selects the data list for the DLISl data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command `MMEMory:CDIR`. To access the files in this directory, you only have to give the file name, without the path and the file extension.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

- **<DSelect>**
 string
Example:
```plaintext
selects the Data Lists data source for the transport channel.
MMEM:CDIR "<root>Lists"
selects the directory for the data lists.
selects file tdscdma_1 as the data source. This file must be in
the specified directory and must have the file extension
*.dm_iqd.
```

Manual operation:
See "Data List Management…" on page 18

```plaintext
```
Sets the bit pattern for the PATTern selection. The first parameter determines the bit
pattern (choice of hexadecimal, octal, or binary notation). The second specifies the
number of bits to use. The maximum length is 64 bits.
For the traffic channels, this value is specific for the selected radio configuration.

Parameters:
- `<Pattern>`: 64 bits
 - *RST*: #H0,1

Example:
```plaintext
#H800FE038,30
defines the bit pattern.
```

Manual operation:
See "Data Source" on page 50

```plaintext
```
The command queries the error protection.

Return values:
- `<EProtection>`: NONE | TURBo3 | CON2 | CON3

Example:
```plaintext
queries the error protection.
```

Usage:
Query only

Manual operation:
See "Error Protection" on page 52

```plaintext
[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:IONe <IOne>
```
The command activates or deactivates the channel coding interleaver state 1 of the
transport channel. Interleaver state 1 can be set independently in each TCH. Activation
does not change the symbol rate.
Remote-Control Commands

Enhanced Channels of Cell 1

Parameters:

<IOne>
0 | 1 | OFF | ON
*RST: ON

Example:
activates the channel coding interleaver state 1 of the transport channel.

Manual operation: See "Interleaver 1 State" on page 52

The command activates or deactivates the channel coding interleaver state 2 off all the transport channels. Interleaver state 2 can only be set for all the TCHs together. Activation does not change the symbol rate.

Parameters:

<ITwo>
0 | 1 | OFF | ON
*RST: ON

Example:
activates the channel coding interleaver state 2 of all the transport channel.

Manual operation: See "Interleaver 2 State" on page 52

The command queries the rate matching.

Return values:

<RmAttribute> integer

Example:
queries the rate matching.

Usage: Query only

Manual operation: See "Rate Matching Attribute" on page 52

The command queries the state of the transport channel.

Parameters:

<State>
0 | 1 | OFF | ON
*RST: ON

Example:
queries the state of the transport channel.
Remote-Control Commands

Enhanced Channels of Cell 1

The command queries the number of transport blocks for the TCH.

Return values:
<TbCount> integer

Example:
queries the number of transport blocks for the TCH.

Usage: Query only
Manual operation: See "Transport Blocks" on page 51

The command queries the size of the transport block at the channel coding input.

Return values:
<TbSize> integer

Example:
queries the size of transport block of the channel coding input.

Usage: Query only
Manual operation: See "Transport Block Size" on page 51

The command queries the number of frames into which a TCH is divided. This setting also defines the interleaver depth.

Return values:
<TtInterval> 5MS | 10MS | 20MS | 40MS | 80MS

Example:
queries the number of frames into which a TCH is divided.

Usage: Query only
Manual operation: See "Transport Time Interval" on page 51

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SCSMode?
The command queries the spreading code predetermined in the standard. For BCH, the spreading code is always "Auto."

Return values:
<ScsMode> AUTO

*RST: AUTO

Example:
queries the spreading code.

Usage: Query only
Manual operation: See "Spreading Code Selection (BCH)" on page 45

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SFORmat?

The command queries the slot format of the selected channel. A slot format defines the complete structure of a slot made of data and control fields and includes the symbol rate. The slot format (and thus the symbol rate, the pilot length, and the TFCI State) depends on the coding type selected.

Return values:
<SFFormat> string

Example:
BB:TDSC:DOWN:CELL1:ENH:BCH:SFOR?
queries the channel coding type.

Usage: Query only

Manual operation: See "Slot Format" on page 45

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SLOTstate<ch0>?

The command queries the state of the slots off cell 1 used to transmit the broadcast channels. Slot 0 is always ON and all the other slots are always OFF.

Return values:
<SlotState> 0 | 1 | OFF | ON
*RST: OFF

Example:
BB:TDSC:DOWN:CELL1:ENH:BCH:SLOT1?
queries the state of slot 1.

Usage: Query only

Manual operation: See "Mapping On Physical Channels: BCH mapped to <Slot> 0, P-CCPCH1/2" on page 45

[:SOURce<hw>]:BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:STATe <State>

The command activates and deactivates the enhanced state for the P-CCPCH 1/2 channel. If the enhanced state is activated, the channel coding cannot be changed in the channel table.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: OFF

Example:
BB:TDSC:DOWN:CELL1:ENH:BCH:STAT ON
deactivates the enhanced state for the P-CCPCH 1/2 channel.

Manual operation: See "State (BCH)" on page 44
The command queries the channel coding type.

Return values:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHSfn</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
BB:TDSC:DOWN:CELL1:ENH:BCH:TYPE?
```

queries the channel coding type.

Usage:

Query only

Manual operation:

See "Coding Type (BCH)" on page 44

5.9 Channel Settings

CELL<st>

Value Range: CELL1

SLOT<ch0>

Value Range: [0] .. 6

CHANnel<us0>

Value Range: [0] .. 21
Remote-Control Commands

TD-SCDMA, incl TD-SCDMA enhanced features

Channel Settings

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:TPC:DATA:DSELect............................................................... 140
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:TPC:DATA:PATTern............................................................... 141
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:TPC:READ............................................................................ 141
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
ENHanced?...................................................................................... 142
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:MSHift?.. 142
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:POWer.......... 143
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SCODe........... 143
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SFACtor........ 144
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SFORmat............. 144
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:STATe............. 144
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:TYPE.............. 144
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:USER............... 145
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DCONflict?........ 145
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:STATE................ 145
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:MODE.............................. 146
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA...................... 146
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA:DSELect............ 147
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA:PATTern........... 147
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:LENGth.................. 147
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:MSHift?.................. 148
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:PCORrection........... 148
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:POWer.................. 148
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SCODe.................... 149
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFACtor.................. 149
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFORmat?................. 149
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:STATe.................... 150
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:USER..................... 150
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:DISTance................. 150
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PCORrection?....... 151
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:POWer.................. 151
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PSTep.................... 152
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:REPetition............ 152
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:START................... 152
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:SLENgh?..................... 153
```

**[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:EUCC:CCOunt <CCount>**

Sets the number of the E-DCH Uplink Control Channels (E-UCCH).

Parameters:

- `<CCount>`
 - **Type:** integer
 - **Range:** 0 to 8
 - **RST:** 0
Example:
BB:TDSC:UP:CELL1:SLOT1:CHAN7:TYPE E_PUCH_QPSK
sets channel type E-PUCH QPSK
sets number of E-UCCH channels

Manual operation: See "Number of E-UCCH Channels" on page 75

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:EUCC:HPID <Hpid>
Sets the HARQ process ID.

Parameters:
<Hpid> integer
Range: 0 to 3
*RST: 0

Example:
BB:TDSC:UP:CELL1:SLOT1:CHAN7:TYPE E_PUCH_QPSK
sets channel type E-PUCH QPSK
sets number HARQ process ID

Manual operation: See "HARQ Process ID" on page 75

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:EUCC:RSNumber <RsNumber>
Sets the retransmission sequence number.

Parameters:
<RsNumber> integer
Range: 0 to 3
*RST: 0

Example:
BB:TDSC:UP:CELL1:SLOT1:CHAN7:TYPE E_PUCH_QPSK
sets channel type E-PUCH QPSK
sets retransmission sequence number

Manual operation: See "Retransmission Sequence Number (E-UCCH)" on page 75

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:EUCC:TFCI <Tfci>
Enters the value of the TFCI field.

Parameters:
<Tfci> integer
Range: 0 to 63
*RST: 0

Example:

```
BB:TDSC:UP:CELL1:SLOT1:CHAN7:TYPE E_PUCH_QPSK
```
sets channel type E-PUCH QPSK

```
```
sets the TFCI value

Manual operation: See “E-TFCI Value” on page 75

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>: DATA <Data>
```

The command determines the data source for the selected channel.

Parameters:

- `<Data>`
 - PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISl | ZERo | ONE | PATTern
 - PNxx
 - PRBS data as per CCITT with period lengths between 29-1 and 223-1 is generated internally.
 - DLISl
 - Internal data from a programmable data list is used.
 - ZERo | ONE
 - Internal 0 and 1 data is used.
 - PATTern
 - A user-definable bit pattern with a maximum length of 64 bits is generated internally.

```
*RST: PN9
```

Example:

```
```
sets the data source for the selected channel to PN9.

Manual operation: See “Data List Management...” on page 18

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>: DATA:DSELect <DSelect>
```

Selects the data list as data source.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMeMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

- `<DSelect>`
 - string
Example:
selects the Data Lists data source.
MMEM:CDIR "<root>Lists"
selects the directory for the data lists.
"tdscdma_1"
selects file tdscdma_1 as the data source. This file must be in
the directory and must have the file extension *.dm_iqd.

Manual operation: See "Data List Management..." on page 18

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DATA:PATTern <Pattern>
Determines the bit pattern. The first parameter determines the bit pattern (choice of
hexadecimal, octal, or binary notation), the second specifies the number of bits to use.

Parameters:
<PATTERN> 64 bits
*RST: #H0,1

Example:
defines the bit pattern.

Manual operation: See "Data" on page 70

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:SYNC:LENGth <Length>
Sets the length of the Sync Shift and the length of the TPC field in bits. The available
values depend on the slot format.

Parameters:
<LENGTH> 0 | 2 | 3 | 4 | 8 | 16 | 32 | 48
*RST: 0

Example:
sets the Sync Shift and the length of the TPC field to 2 bits.

Manual operation: See "Number of Sync Shift & TPC Bits" on page 74

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:SYNC:PATTern <Pattern>
The command sets the bit pattern for the sync shift. The maximum pattern length is 64
bits.

Parameters:
<PATTERN> string
*RST: 1
\(10-01 \)
sets the bit pattern for the sync shift.

Manual operation: See "Sync Shift Pattern" on page 74

\(\text{[:SOURce<hw>:]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:SYNC:REPetition <Repetition>} \)

The command sets the value for the sync shift repetition. This value is used to define the time lag for which the sync shift is used to transmit a new time adjustment. Thereby, \(M \) specifies the time lag in subframes a 5 ms.

Parameters:
\(<\text{Repetition}>\) integer
Range: 1 to 8
*RST: 1

\(1 \)
sets the value for the sync shift repetition.

Manual operation: See "Sync Shift Repetition M" on page 74

\(\text{[:SOURce<hw>:]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TFCI:LENGth <Length>} \)

Sets the length of the TFCI field in bits.

Parameters:
\(<\text{Length}>\) 0 | 4 | 6 | 8 | 12 | 16 | 24 | 32 | 48
*RST: 0

\(12 \)
sets the length of the TFCI field to 12 bits.

Manual operation: See "Number of TFCI Bits" on page 73

\(\text{[:SOURce<hw>:]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DPCCh:TFCI:VALue <Value>} \)

The command sets the value of the TFCI field.

Parameters:
\(<\text{Value}>\) integer
Range: 0 to 1023
*RST: 0

\(0 \)
sets the value of the TFCI field to 0.

Manual operation: See "TFCI Value" on page 73
The command sets the data source for the TPC field of the DPCCH.

Parameters:

- **<Data>**
 - **DLISt | ZERO | ONE | PATTern**
 - **DLISt**
 A data list is used. The data list is selected with the command
 - **ZERO | ONE**
 Internal 0 and 1 data is used.
 - **PATTern**
 Internal data is used. The bit pattern for the data is defined by
 the command

Example:

 selects as the data source for the TPC field of channel 6 of cell 4
 the bit pattern defined with the following command.

 defines the bit pattern.

Manual operation: See "Data List Management..." on page 18

The command selects the data list for the Data List TPC source selection.

The lists are stored as files with the fixed file extensions `*.dm_iqd` in a directory of the user’s choice. The directory applicable to the following commands is defined with the command "MMEMory:CDIR". To access the files in this directory, you only have to give the file name, without the path and the file extension.

For the traffic channels, this value is specific for the selected radio configuration.

Parameters:

- **<DSelect>**
 - **string**
Remote-Control Commands

Example:
```
DLIS
selects the Data Lists data source.
MMEM:CDIR "<root>Lists"
selects the directory for the data lists.
DSEL "tdscdma_1"
selects file tdscdma_1 as the data source. This file must be in
the directory and must have the file extension *.dm_iqd.
```

Manual operation: See "Data List Management..." on page 18

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:TPC:DATA:PATTern <Pattern>
```

Sets the bit pattern. The maximum bit pattern length is 64 bits.

Parameters:
- `<Pattern>`: 64 bits
- `*RST:` `#H1,2`

Example:
```
PATT #H3F,8
defines the bit pattern.
```

Manual operation: See "TPC Source" on page 76

```
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
DPCCh:TPC:READ <Read>
```

The command sets the read out mode for the bit pattern of the TPC field.
Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTinuous</td>
<td>The TPC bits are used cyclically.</td>
</tr>
<tr>
<td>S0A</td>
<td>The TPC bits are used once and then the TPC sequence is continued with 0 bits.</td>
</tr>
<tr>
<td>S1A</td>
<td>The TPC bits are used once and then the TPC sequence is continued with 1 bit.</td>
</tr>
<tr>
<td>S01A</td>
<td>The TPC bits are used once and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on the symbol rate, for example, 00001111).</td>
</tr>
<tr>
<td>S10A</td>
<td>The TPC bits are used once, and then the TPC sequence is continued with 1 and 0 bits alternately (in multiples, depending on the symbol rate, for example, 11100000).</td>
</tr>
</tbody>
</table>

*RST: CONTinuous

Example:

S01A

the TPC bits are used once, and then the TPC sequence is continued with 0 and 1 bits alternately (in multiples, depending on the symbol rate, for example, 00001111).

Manual operation: See "Read Out Mode" on page 77

[>:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:ENHanced?

The command queries the enhanced state. If the enhanced state is set to ON, the channel coding cannot be changed.

Return values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>NOvalue</td>
</tr>
</tbody>
</table>

*RST: NOvalue

Example:

queries the enhanced state of channel 6.

Usage: Query only

Manual operation: See "Enhanced" on page 68

[>:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:MSHift?

The command queries the midamble shift.
The midamble can be shifted in a value range of 0 to 128 chips in increments of 8 chips. Channels belonging to the same mobile station are characterized by the same midamble shift.

Return values:

- **<MShift>**
 - Type: integer
 - Range: 0 to 128
 - *RST*: 120

Example:

```
```

queries the midamble shift.

Usage:

- **Query only**

Manual operation:

See "Midamble Shift" on page 73

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:POWer <Power>

The command sets the channel power in dB.

Parameters:

- **<Power>**
 - Type: float
 - Range: -80 dB to 0 dB
 - Increment: 0.01 dB
 - *RST*: 0 dB

Example:

```
```

set the channel power to -20 dB.

Manual operation:

See "Power/dB" on page 69

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:SCODE <SCode>

Sets the spreading code for the selected channel. The code channel is spread with the set spreading code. The range of values of the spreading code depends on the channel type and the spreading factor. Depending on the channel type, the range of values can be limited.

Parameters:

- **<SCode>**
 - Type: integer
 - Range: 1 to 16
 - *RST*: 1

Example:

```
```

set the spreading code for channel 6 to 1.

Manual operation:

See "Sprd. Code" on page 69
[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
SFACtor <SFactor>

The command sets the spreading factor for the selected channel. The selection depends on the channel type and interacts with the slot format.

Parameters:
<SFactor> 1 | 2 | 4 | 8 | 16
*RST: 16

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
SFORmat <SFormat>

Sets the slot format for the selected channel. A slot format defines the complete structure of a slot made of data and control fields and includes the symbol rate. The slot format displays changes when a change is made to the "Number of TFCI Bits" and the "Number of Sync Shift & TPC Bits" field settings.

Parameters:
<SFormat> integer
Range: 0 to 69
*RST: -

Example: BB:TDSC:DOWN:CELL4:SLOT3:CHAN6:SFOR 0 sets the slot format for channel 6 to 0.

Manual operation: See "Slot Fmt" on page 69

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
STATe <State>

The command activates or deactivates the channel.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: OFF

Manual operation: See "State" on page 71

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:
TYPE <Type>

Sets the channel type.
In the uplink, the channel type is fixed for channel number 0. In the downlink, the channel type is fixed for channel numbers 0 to 5. For the remaining numbers, the choice lies between the relevant standard channels and the high speed channels.

Parameters:

* **<Type>**
 - P_CCPCH1 | P_CCPCH2 | S_CCPCH1 | S_CCPCH2 | FPACH | PDSCH | DPCH_QPSQ | DPCH_8PSQ | HS_SCCCH1 | HS_SCCCH2 | HS_PDS_QPSK | HS_PDS_16QAM | PUSCH | UP_DPCQ_QPSK | UP_DPCQ_8PSK | HS_SICH | HS_PDS_64QAM | E_PUCH_QPSK | E_PUCH_16QAM | E_RUCCH | PLCCH | EAGCH | EHICH
 - *RST:* depends on channel number

Example:

```
```

sets the channel type DPC_QPSK for channel 6 of the channel table.

Manual operation:

See "Channel Type" on page 68

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:USER <User>

Sets the number of the user.

* **Parameters:**
 - **<User>** integer
 - Range: 1 to 16
 - *RST:* 1

Example:

```
```

sets the number of the users to 3.

Manual operation:

See "Crt.User/Mid.Shift" on page 69

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:DCONflict?

The command queries the global domain conflict state per slot.

* **Return values:**
 - **<DConflict>** 0 | 1 | OFF | ON
 - *RST:* ON

Example:

```
BB:TDSC:UP:CELL1:SLOT3:DCON?
```

queries whether the slot has a code domain conflict.

Usage:

Query only

Manual operation:

See "Dom. Conf." on page 71

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:SLOT<ch0>:STATe <State>

The command activates and deactivates the slot in the subframe.
Parameters:

<State>

0 | 1 | OFF | ON

RST: OFF

Example:
BB:TDSC:DOWN:CELL1:SLOT0:STAT ON
activates slot0.

Manual operation: See "Slot Icon" on page 42

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:MODE <Mode>

The command sets the mode in which the slot is to work.

Parameters:

<Mode>

DEDicated | PRACh

DEDicated
The instrument generates a signal with a dedicated physical control channel (DPCCH) and up to 6 dedicated physical data channels (DPDCH). The signal is used for voice and data transmission.

PRACh
The instrument generates a single physical random access channel (PRACH). This channel is needed to set up the connection between the mobile station and the base station.

RST: DEDicated

Example:
sets the PRACH mode for the selected slot.

Manual operation: See "Slot Mode" on page 66

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA <Data>

The command determines the data source for the PRACH.

Parameters:

<Data>

PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLISt | ZERO | ONE | PATTern

PNxx
PRBS data as per CCITT with period lengths between 2^9-1 and 2^{23}-1 is generated internally.

DLISt
Internal data from a programmable data list is used.

ZERO | ONE
Internal 0 and 1 data is used.

PATTern
A user-definable bit pattern with a maximum length of 64 bits is generated internally.

RST: PN9
Example: \[BB:TDSC:UP:CELL4:SLOT3:PRAC:MSG:DATA: \text{PN9} \] selects PN9 as the data source for the PRACH.

Manual operation: See "Data List Management..." on page 18

\[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA: \text{DSELect <DSelect>} \]

The command selects the data list for the Data List data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters:

\begin{itemize}
 \item <DSelect> string
\end{itemize}

selects the Data Lists data source.

\[\text{MMEM:CDIR "<root>Lists"} \]
selects the directory for the data lists.

selects file tdscdma_1 as the data source. This file must be in the directory and it must have the file extension *.dm_iqd.

Manual operation: See "Data List Management..." on page 18

\[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:DATA: \text{PATTern <Pattern>} \]

Determines the bit pattern. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:

\begin{itemize}
 \item <Pattern> 64 bits
 \item *RST: \#H0,1
\end{itemize}

defines the bit pattern.

Manual operation: See "Data Source (PRACH)" on page 80

\[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:LENGTH <Length> \]
The command sets the message length of the random access channel in subframes.
Parameters:

<Length> 1 | 2 | 4
*RST: 1

Example:

sets the message length of the random access channel to 1 subframe.

Manual operation: See "Message Length" on page 80

[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:MSHift?]

The command queries the value of the midamble shift.

Return values:

<MShift> integer
Range: 0 to 128
*RST: 120

Example:

queries the value of the midamble shift.

Usage: Query only

Manual operation: See "Midamble Shift (PRACH)" on page 81

Queries the value of the power correction.

Parameters:

<PCorrection> float
Range: -1E10 to 1E10
Increment: 0.01
*RST: -

Example:

sets the power of the PRACH message part

queries the value of the power correction.

Response: 2.99086185076844

Manual operation: See "Power (RACH Message Part)" on page 80

[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:POWer <Power>]

The command sets the power of the PRACH message part.
Parameters:

- **<Power>**
 - Type: float
 - Range: -80.0 dB to 0.0 dB
 - Increment: 0.01 dB
 - RST: 0 dB

Example:

```
```

Manual operation: See "Power (RACH Message Part)" on page 80

```
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SCODE <SCode>
```

Sets the spreading code for the PRACH. The code channel is spread with the set spreading code.

Parameters:

- **<SCode>**
 - Type: integer
 - Range: 1 to 16
 - RST: 1

Example:

```
```

Manual operation: See "Spreading Code (PRACH)" on page 80

```
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFACtor <Sfactor>
```

The command sets the spreading factor for the PRACH.

Parameters:

- **<Sfactor>**
 - Values: 4 | 8 | 16
 - RST: 16

Example:

```
```

Manual operation: See "Spreading Factor (PRACH)" on page 80

```
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFORmat?
```

This command queries the slot format of the PRACH. The slot format depends on the selected spreading factor.

Return values:

- **<SFormat>**
 - Type: integer
 - Range: 0 to 25
 - RST: 0
Example: `BB:TDSC:UP:CELL4:SLOT3:PRAC:MSG:SFOR 1` queries the slot format of the PRACH.

Usage: Query only

Manual operation: See "Slot Format (PRACH)" on page 80

[::SOURce<hw>::BB:TDScdma:UP:CELL<st>::SLOT<ch0>::PRAC:MSG:STATe <State>]

The command activates or deactivates the RACH (random access channel) message part.

Parameters:
<State> 0 | 1 | OFF | ON
*RST: OFF

Manual operation: See "State (RACH Message Part)" on page 79

[::SOURce<hw>::BB:TDScdma:UP:CELL<st>::SLOT<ch0>::PRAC:MSG:USER <User>]

Sets number of current user.

Parameters:
<User> integer
Range: 1 to 16
*RST: 1

Manual operation: See "Current User (PRACH)" on page 81

[::SOURce<hw>::BB:TDScdma:UP:CELL<st>::SLOT<ch0>::PRAC:PTS:DISTance <Distance>]

The command sets the value to vary the timing between UpPTS and RACH.

Parameters:
<Distance> integer
Range: 1 to 4
*RST: 1

Example: `BB:TDSC:UP:CELL4:SLOT3:PRAC:PTS:DIST 1` sets the number of the subframe in which the first UpPTS should be transmitted.

Manual operation: See "Distance UpPTS" on page 78
Queries the power correction of the UpPTS.

The value is computed based on:

- UpPTS power
 \(\text{BB:TDSC:UP:CELL:SLOT:PRAC:PTS:POW} \)
- power step
 \(\text{BB:TDSC:UP:CELL:SLOT:PRAC:PTS:PST} \)
- message power
 \(\text{BB:TDSC:UP:CELL:SLOT:PRAC:MSG:POW} \)
- UpPTS length, Message Length
 \(\text{BB:TDSC:UP:CELL:SLOT:PRAC:MSG:LENG} \)
- ARB sequence length
 \(\text{BB:TDSC:SLEN} \)

Return values:

- \(<\text{PCorrection}>\) float
 - Range: \(-1E10\) to \(1E10\)
 - Increment: \(0.01\)
 - *RST*: 1

Example:

- **BB:TDSC:UP:CELL4:SLOT3:PRAC:PTS:POW -12** sets the power of the UpPTS.
- **BB:TDSC:UP:CELL4:SLOT3:PRAC:PTS:PCOR?** queries the power correction of the UpPTS.
 - Response: 0.8890863332626

Usage:
Query only

Manual operation:
See "Power" on page 79

The command sets the power of the UpPTS.

Parameters:

- \(<\text{Power}>\) float
 - Range: \(-80\ dB\) to \(0\ dB\)
 - Increment: \(0.01\ dB\)
 - *RST*: \(0\ dB\)

Example:

- **BB:TDSC:UP:CELL4:SLOT3:PRAC:PTS:POW -12** sets the power of the UpPTS.

Manual operation:
See "Power" on page 79
[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PSTep <PStep>

The command sets the power by which the UpPTS is increased from repetition to repetition.

Parameters:
- `<PStep>`: float
 - Range: 0.0 dB to 10.0 dB
 - Increment: 0.01
 - *RST*: 0 dB

Example:
defines the power by which the UpPTS is increased from repetition to repetition.

Manual operation: See "Power Step" on page 78

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:REPetition <Repetition>

The command sets the number of UpPTS repetitions before a PRACH burst happens.

Parameters:
- `<Repetition>`: integer
 - Range: 1 dB to 10 dB
 - *RST*: 1 dB

Example:
sets the number of UpPTS repetitions before a PRACH burst happens.

Manual operation: See "UpPTS Repetition" on page 79

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:STARt <Start>

The command sets the number of the subframe in which the first UpPTS should be transmitted.

Parameters:
- `<Start>`: integer
 - Range: 0.0 dB to 10.0 dB
 - *RST*: 0.0 dB

Example:
sets the number of the subframe in which the first UpPTS should be transmitted.

Manual operation: See "UpPTS Start" on page 78
[:SOURce<hw>]:BB:TDScdma:UP:CELL<st>:SLOT<ch0>:PRAC:SLENgth?

The command queries the sequence length of the PRACH slot.

The value is computed based on:

- **Start Subframe**

- **UpPTS Repetition**

 \[BB:TDSc:UP:CELL:SLOT:PRAC:PTS:REP \]

- **Distance UpPTS and RACH**

 \[BB:TDSc:UP:CELL:SLOT:PRAC:PTS:DIST \]

- **Message Length**

 \[BB:TDSc:UP:CELL:SLOT:PRAC:MSG:LENG \]

Return values:

- **<SLength>** float

 | Range: | 0.5 to 13.5 |
 | Increment: | 0.5 |
 | *RST:* | 0.5 |

Example:

sets the number of the subframe in which the first UpPTS should be transmitted.

\[BB:TDSc:UP:CELL4:SLOT3:PRAC:PTS:REP 2 \]

sets the number of UpPTS repetitions before a PRACH burst happens.

\[BB:TDSc:UP:CELL4:SLOT3:PRAC:PTS:DIST 2 \]

sets the number of the subframe in which the first UpPTS should be transmitted.

\[BB:TDSc:UP:CELL4:SLOT3:PRAC:MSG:LENG 1 \]

sets the message length of the random access channel to 1 sub-frame.

queries the sequence length.

Response: 3.5

Usage: Query only

Manual operation: See "Sequence Length" on page 79

5.10 HSDPA/HSUPA Settings

CELL<st>

Value Range CELL1

................................. 154

................................. 155

................................. 155

................................. 156
Remote-Control Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
</table>

Enables a predefined set of RMC channels or fully configurable user mode.
Remote-Control Commands

Parameters:

<Rmc>
- HRMC_0M5_QPSK | HRMC_1M1_QPSK | HRMC_1M1_16QAM | HRMC_1M6_QPSK | HRMC_1M6_16QAM | HRMC_2M2_QPSK | HRMC_2M2_16QAM | HRMC_2M8_QPSK | HRMC_2M8_16QAM | HRMC_64QAM_16UE | HRMC_64QAM_19UE | HRMC_64QAM_22UE | USER
*RST: HRMC_0M5_QPSK

Example:
sets the RMC mode

Manual operation: See "RMC Configuration" on page 57

<Scch>

Enables/disables the HS-SCCH.

Parameters:

<Scch>
- 0 | 1 | OFF | ON
*RST: OFF

Example:
enables HS-SCCH

Manual operation: See "HS-SCCH State" on page 59

Queries the distribution of packets over time.

The Signaling Pattern displays a HARQ-Process cycle and is a sequence of HARQ-IDs and ".". A HARQ-ID indicates a packet, a "." indicates no packet. The Signaling Pattern is cyclically repeated.

Return values:

<SPattern> string

Example:
sets the TTI distance
queries the signaling pattern
Response: '0,-,1,-2,-,3,-'

Usage: Query only

Manual operation: See "Signaling Pattern" on page 64

Sets the transport block size table, according to the specification 3GPP TS 25.321.

Parameters:

Parameters:	C1TO3	C4TO6	C10TO12	C7TO9	C13TO15	C16TO18	C19TO21	C22TO24
*RST: | C1TO3

C13TO15

sets the transport block table

Manual operation: See "Transport Block Size Table" on page 62

Sets the inter TTI distance, i.e. distance between two packets in HSDPA packet mode and determines whether data is send each TTI or there is a DTX transmission in some of the TTIs.

An Inter TTI Distance of 1 means continuous generation.

Parameters:

Parameters: integer

Range: 1 to 8

*RST: 1

sets the TTI distance

Manual operation: See "Inter TTI Distance" on page 63

Sets the UE identity.

Parameters:

Parameters: integer

Range: 0 to 65535

*RST: 0

sets the UE ID

Manual operation: See "UEID (H-RNTI)" on page 59

Sets the size of the virtual IR buffer.
HSDPA/HSUPA Settings

Remote-Control Commands

<table>
<thead>
<tr>
<th>Parameters:</th>
<th><VibSize></th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>dynamic to 63360</td>
<td></td>
</tr>
<tr>
<td>Increment:</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>*RST:</td>
<td>2816</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
```

sets the size of the virtual IR buffer

Manual operation: See "Virtual IR Buffer Size (Per HARQ process)" on page 63

<table>
<thead>
<tr>
<th>[:SOURce<hw>:]:BB:TDSCdma:UP:CELL<st>:ENH:DCH:HSUPA:EUCTti <Euctti></th>
<th>Sets the number of E-UCCH channels per TTI.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
<td><Euctti> integer</td>
</tr>
<tr>
<td>Range:</td>
<td>1 to 8</td>
</tr>
<tr>
<td>*RST:</td>
<td>4</td>
</tr>
</tbody>
</table>

Example:

```
```

sets the number of channels

Manual operation: See "Number of E-UCCH per TTI" on page 60

<table>
<thead>
<tr>
<th>[:SOURce<hw>:]:BB:TDSCdma:UP:CELL<st>:ENH:DCH:HSUPA:FRC <Frc></th>
<th>Selects a predefined E-DCH fixed reference channel or fully configurable user mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters:</td>
<td><Frc> 1</td>
</tr>
<tr>
<td>*RST:</td>
<td>1</td>
</tr>
</tbody>
</table>

Example:

```
```

sets the number of channels

Manual operation: See "E-DCH Fixed Reference Channel (FRC)" on page 58

<table>
<thead>
<tr>
<th>[:SOURce<hw>:]:BB:TDSCdma:UP:CELL<st>:ENH:DCH:HSUPA:RSequence <RSequence></th>
</tr>
</thead>
<tbody>
<tr>
<td>(for "HSUPA" and "HARQ Mode" set to Constant NACK)</td>
</tr>
<tr>
<td>Sets the retransmission sequence.</td>
</tr>
<tr>
<td>Parameters:</td>
</tr>
<tr>
<td>*RST:</td>
</tr>
</tbody>
</table>
Example:

```
sets the channel coding type to HSUPA.
sets the HARQ mode
BB:TDSC:UP:CELL1:ENH:DCH:HSUPA:RSEQ '0,2,3'
sets the retransmission sequence
```

Manual operation: See "Retransmission Sequence" on page 65

(for HARQ Mode set to Constant ACK)

Queries the retransmission sequence number.

The value is fixed to 0.

Return values:

```
<RsNumber>  integer
Range: 0 to 0
*RST: 0
```

Example:

```
sets the HARQ mode
queries the retransmission sequence number
Response: 0
```

Usage: Query only

Manual operation: See "Retransmission Sequence Number" on page 65

Selects the spreading factor for the FRC.

Parameters:

```
<SFactor>  1 | 2 | 4 | 8 | 16
*RST: 4
```

Example:

```
sets the spreading factor
```

Manual operation: See "Spreading Factor (FRC)" on page 60

[:SOURce<hw>]:BB:TDSCdma:UP:CELL<st>:ENH:DCH:HSUPA:TBS:TABLe <Table>

Sets the transport block size table, according to the specification 3GPP TS 25.321, Annex BC.
Parameters:

<table>
<thead>
<tr>
<th><Table></th>
<th>C1TO2</th>
<th>C3TO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST:</td>
<td>C1TO2</td>
<td></td>
</tr>
</tbody>
</table>

Example:

sets the transport block table

Manual operation:

See "Transport Block Size Table 0" on page 62

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSUPA|HSUPA:
BPAYload?

Queries the payload of the information bit, i.e. transport block size. This value determines the number of transport layer bits sent in each TTI before coding.

Return values:

<table>
<thead>
<tr>
<th><BPayload></th>
<th>integer</th>
</tr>
</thead>
</table>

Example:

queries the Ninf

Usage:

Query only

Manual operation:

See "Information Bit Payload (Ninf)" on page 63

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSUPA|HSUPA:
CRATe?

Queries the coding rate.

Return values:

<table>
<thead>
<tr>
<th><CRate></th>
<th>float</th>
</tr>
</thead>
</table>

Example:

queries the coding rate

Usage:

Query only

Manual operation:

See "Coding Rate (HSDPA/HSUPA)" on page 63

[:SOURce<hw>]:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSUPA|HSUPA:
CTSCount <CtsCount>

Sets the number of physical channels per time slot.

Parameters:

<table>
<thead>
<tr>
<th><CtsCount></th>
<th>integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>1 to 14</td>
</tr>
<tr>
<td>*RST:</td>
<td>10(downlink), 1(uplink)</td>
</tr>
</tbody>
</table>

Example:

sets the number of codes per TS
Remote-Control Commands

HSDPA/HSUPA Settings

Manual operation: See "Number of HS-PDSCH/E-DCH Codes per TS" on page 60

The command determines the data source for the HSDPA/HSUPA channels.

Parameters: <Data>

- PN9 | PN11 | PN15 | PN16 | PN20 | PN21 | PN23 | DLIST | ZERO | ONE | PATTern
- PNxx
 PRBS data as per CCITT with period lengths between 2^{9}-1 and 2^{23}-1 is generated internally.
- DLIST
 Internal data from a programmable data list is used.
- ZERO | ONE
 Internal 0 and 1 data is used.
- PATTern
 A user-definable bit pattern with a maximum length of 64 bits is generated internally.

*RST: PN9

Example:

selects the data source.

Manual operation: See "Data Source (HSDPA/HSUPA)" on page 61

The command selects the data list for the Data List data source selection.

The lists are stored as files with the fixed file extensions *.dm_iqd in a directory of the user's choice. The directory applicable to the following commands is defined with the command MMEMory:CDIR. To access the files in this directory, you only have to give the file name, without the path and the file extension.

Parameters: <DSelect>

- string

Example:

selects the Data Lists data source.

MMEM:CDIR "<root>Lists"
selects the directory for the data lists.

selects file tdscdma_1 as the data source. This file must be in the directory and must have the file extension *.dm_iqd

Manual operation: See "Data Source (HSDPA/HSUPA)" on page 61

Determines the bit pattern. The first parameter determines the bit pattern (choice of hexadecimal, octal or binary notation), the second specifies the number of bits to use.

Parameters:

- `<Pattern>`: 64 bits
- *RST: #H0,1

Example:

```
```

defines the bit pattern.

Manual operation: See "Data Source (HSDPA/HSUPA)" on page 61

Sets the number of HARQ processes. This value determines the distribution of the payload in the subframes and depends on the Inter TTI Distance.

A minimum of 3 HARQ Processes are required to achieve continuous data transmission.

Parameters:

- `<Length>`: integer
- Range: 1 to 8
- *RST: 4

Example:

```
```

sets the number of HARQ processes

Manual operation: See "Number of HARQ Processes" on page 63

Sets the HARQ simulation mode.

Parameters:

- `<Mode>`: CACK | CNACK

CACK

New data is used for each new TTI. This mode is used to simulate maximum throughput transmission.

CNACK

Enables NACK simulation, i.e. depending on the sequence selected with command

```
```

packets are retransmitted. This mode is used for testing with varying redundancy version.

*RST: CACK
Remote-Control Commands

HSDPA/HSUPA Settings

Example:

```
```

sets the HARQ mode

Manual operation:

See "HARQ Mode" on page 64

Queries maximum information bits sent in each TTI before coding.

Return values:

- `<Mibt>`: float
 - Increment: 0.1

Example:

```
```

queries the maximum information bit throughput

Usage: Query only

Manual operation:

See "Maximum Information Bit Throughput /kbps" on page 59

Sets the modulation scheme for each HSDPA RMC or HSUPA FRC.

The HSUPA FRCs do not support modulation scheme 64QAM.

Parameters:

- `<Modulation>`: QPSK | QAM16 | QAM64
 - *RST:* QPSK

Example:

```
```

sets the modulation

Manual operation:

See "Modulation (HSDPA/HSUPA)" on page 61

Queries the number of bits after coding.

Return values:

- `<NcbTti>`: integer

Example:

```
```

queries the number of bits after coding

Usage: Query only

Manual operation:

See "Number of Coded Bits Per TTI" on page 61

(for HARQ Mode set to Constant ACK)

Sets the redundancy version parameter, i.e. indicates which redundancy version of the data is sent.

Parameters:
- **<RvParameter>** integer
- Range: 0 to 7
- *RST: 0

Example:

```
sets the HARQ mode
sets the redundancy version parameter
```

Manual operation: See "Redundancy Version Parameter" on page 64

(for HARQ Mode set to Constant NACK)

Sets the retransmission sequence.

The sequence has a length of maximum 30 values. The sequence length determines the maximum number of retransmissions. New data is retrieved from the data source after reaching the end of the sequence.

For HSUPA, the command is a query only.

Parameters:
- **<RvSequence>** string
- *RST: 0

Example:

```
sets the HARQ mode
BB:TDSC:DOWN:CELL1:ENH:DCH:HSDPA:RVS '0,2,1'
s sets the redundancy version sequence
sets the channel coding type to HSUPA.
sets the HARQ mode
BB:TDSC:UP:CELL1:ENH:DCH:HSUPA:RSEQ '0,2,3'
s sets the retransmission sequence
queries the redundancy version sequence
Response: '0,2,1'
```

Manual operation: See "Redundancy Version Sequence" on page 65
[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
SFORmat?]

Queries the slot format of the selected channel.

A slot format defines the complete structure of a slot made of data and control fields. The slot format depends on the coding type selected.

Return values:
<SFormat> string

queries the slot format

Usage: Query only

Manual operation: See "Slot Format (HSDPA/HSUPA)" on page 60

[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
TBS:INDex <Index>]

Sets the index for the corresponding table, as described in 3GPP TS 25.321.

Parameters:
<Index> integer
Range: 0 to 63
*RST: -

sets the TB table index

Manual operation: See "Transport Block Size Index" on page 62

[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
TSCount <TsCount>]

Sets the number of time slots.

Parameters:
<TsCount> integer
Range: 2 to 5
*RST: 2

sets the number of time slots

Manual operation: See "Number of HS-PDSCH/E-DCH Time Slots" on page 60

[:SOURce<hw>:BB:TDSCdma:DOWN|UP:CELL<st>:ENH:DCH:HSDPA|HSUPA:
TTINterval?]

Queries the transmission time interval (TTI).
Remote-Control Commands

Return values:

<TtInterval> 5MS

Example:

```
quesis the TTI
Response: 5MS
```

Usage: Query only

Manual operation: See "Transmission Time Interval (TTI)" on page 60

Queries the UE category that is minimum required to receive the selected RMC or FRC.

Return values:

<integer>

Example:

```
HRMC_2M8_16QAM
sets a RMC
quesis the UE category
Response: 13
```

Usage: Query only

Manual operation: See "UE Category" on page 59
List of Commands

::SOURce<hw>::BB:TDSCdma:CLIPping:LEVEL
::SOURce<hw>::BB:TDSCdma:CLIPping:MODE
::SOURce<hw>::BB:TDSCdma:CLIPping:STATe
::SOURce<hw>::BB:TDSCdma:CLOCK:MODE
::SOURce<hw>::BB:TDSCdma:CLOCK:MULTiplier
::SOURce<hw>::BB:TDSCdma:CLOCK:SOURce
::SOURce<hw>::BB:TDSCdma:CLOCK:SYNchronization:EXECute
::SOURce<hw>::BB:TDSCdma:CLOCK:SYNchronization:MODE
::SOURce<hw>::BB:TDSCdma:COPY:DESTination
::SOURce<hw>::BB:TDSCdma:COPY:EXECute
::SOURce<hw>::BB:TDSCdma:COPY:SOURce
::SOURce<hw>::BB:TDSCdma:CRATE:VARiation
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:DWPTs:MODE
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:DWPTs:POWER
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:DWPTs:STATe?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:BPFrame?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:CRCSize?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:DATA
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:EPRotation?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:IONE
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:ITWO
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:RMATtribute?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:TBCount?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:TTINterval?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:DTCH:SCSMode?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SFORMat?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:SLOTstate<ch0>?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:STATe
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:BCH:TYPE?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:HSDPA:RMC
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:HSDPA:SCCH
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:HSDPA:SPAAttern?
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:HSDPA:TTIDistance
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:HSDPA:UEID
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:HSDPA:VIBSize
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:PLCCh:SSPaTTern
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:PLCCh:TPCPattern
::SOURce<hw>::BB:TDSCdma:DOWN:CELL<st>:ENH:DCH:PLCCh:TTINterval?
List of Commands

TD-SCDMA, incl TD-SCDMA enhanced features

[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:ENH:DCH:BFRAME?... 121
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:MCODE?... 113
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:MOTION... 113
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:SCODe... 114
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:SCODe:STATe... 114
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:SDCode?.. 114
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA.................................. 137
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA:DSELECT................ 137
[:SOURce<hw>]:BB:TDSCDMA:DOWN|UP:CELL<st>:SLOT<ch0>:CHANnel<us0>:DATA:PATCH................................ 138
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SCODE...149
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFACtor...149
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:SFORmat?......................................149
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:STATe...150
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:MSG:USER...150
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:DISTance......................................150
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PCORrection?..............................151
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:POWer...151
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:PTS:PSTep...152
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:SLOT<ch0>:PRAC:SLENgh?..153
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:UPPTs:MODE..112
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:UPPTs:POWer...112
[[:SOURce<hw>:BB:TDSCdma:UP:CELL<st>:UPPTs:STATe?..113
[[:SOURce<hw>:BB:TDSCdma:VERSion?..92
[[:SOURce<hw>:BB:TDSCdma:WAVeform:CREate...93
[[:SOURce<hw>:BB:TDSCdma:[TRIGger]SEQUence..102
Accept - Copy ...86
Accept - Predefined Settings ...111
Accept Copy ..22
ACK/NAK Pattern ...55
Activate Cell ...23, 39
Activate Slot ...42
Activate Slot – TD-SCDMA ...145
Activate Transport Channel ...131
Adjust Total Power to 0 dB ...22, 88
ARB Marker ...34
ARB-Settings ..20
Arm ...31
Arm Trigger ..21, 98
Armed_Auto ...102
Armed_Reset ...102

B

B x T ...24, 95
Baseband Clipping ...25
Baseband Filter ...24, 94
Baseband Filter ...20
Basic midamble code ...11
Basic Midamble Code ID ...40, 113
BCH Slot ...45, 133
BCH Spreading Code Selection45, 132
Bit Error Rate ...55
Bit Error State ...55, 120
Block Error Rate ..56
Block Error State ..56, 120

C

Channel Graph - Downlink ..66
Carrier Spacing ...11
CDMS Version ..92
Cell Default Values ...21, 90
Cell State ...23
Channel Coding ...44, 45, 46, 133
Channel Number ...68
Channel Power ...69, 143
Channel State ...71, 144
Channel Type ...68
Channel types ..11
Chip Clock Mode ...36
Chip Rate ..11, 19, 87
Chip Rate Variation ..25
Chip Sequence Period Marker ...34
Clipping ..20
Clipping Level ..27
Clipping Mode ...27, 94
Clipping State ..25
Clock Mode ..36
Clock Multiplier ...37
Clock Source ...36
Code Domain Graph - Downlink66
Coding Rate ...63, 159
Coding Scheme ..44, 46
Coding Type ...44, 46

Conventions

SCPI commands ...84
Copy Cell ...22, 86
Copy Cell Settings ..22
Copy From Source ...22
Copy To Destination ...22, 85
CQI Modulation ...55
CQI Value ...55, 119
CRC ...39, 128
Crest factor ..25
Crest Factor ..38, 110
Crest factor - Clipping ..93
Current Range without Recalculation35
Current Range Without Recalculation Minimum105
Cut Off Frequency Factor ...25

D

Data Bits Per Frame ..45, 49, 121, 128
Data list ...70
Data List ...129
Data List – TD SCDMA ...122
Data List Management ...18
Data Modulation ...11
Data source ..50, 61, 70
PRACH ..80
Data Source ..122, 128
DCCH On ...50, 131
DCH Slot ...48
DCH Spreading Code Selection ..48, 126
DCH State ...45
Deactivate Cell ...23, 39
Deactivate Slot ...42
Dedicated Slot Mode ..66, 146
Default settings ...21, 90
Default Settings ...17, 22, 37
Delay - Marker ...35
Delay - Trigger ...31
Distance UpPTS ..101
DList/Pattern ..137
Documentation overview ..7
Domain Conflict ..71, 145
Downlink ...20
DPCCH Settings ..70
DPCH Spreading Factor ..38, 121
DTCH On ...50, 131
DwPCTS Model ...40, 112
DwPCTS Power ...40
DwPCTS State ...113

E

E-DCH Fixed Reference Channel (FRC)58
E-DCH Fixed Reference Channel (FRC)157
E-TFCI Value ..75
Edit Data List ..18
Enhanced ...68, 142
Enhanced Channel Settings ...41
Error Protection ..52, 123, 130
Execute Trigger ...20, 31, 98
External Trigger Delay ...101
External Trigger Inhibit ...102
F
Fall Delay .. 29, 88
File Manager .. 17
Filter ... 11, 20
Filter Parameter ... 24, 95
Filter Type .. 24, 94
Filtering, Clipping, ARB Settings 20, 24
Fix marker delay to current range 35
Frame structure .. 11

G
Generate Waveform File ... 19
Global Trigger/Clock Settings 37
Guard period .. 42

H
HARQ Mode .. 64
HARQ Process ID .. 75
Hide BCH Details ... 44
Hide Channel Details ... 44, 48
Hide DCH Details ... 48
HS-SCCH State .. 59, 155

I
In Baseband Only ... 29, 88
Information Bit Payload (Ninf) 63
Insert Bit Errors ... 55, 119
Insert Errors On .. 55, 119
Inter TTI Distance .. 63, 156
Interleaver 1 State .. 52, 123, 130
Interleaver 2 State .. 52, 124, 131

L
Link Direction .. 20, 87
Load TD-SCDMA Settings .. 17

M
Manual Trigger .. 98
Marker ... 20
Marker Delay ... 35
Marker Mode ... 34, 105
Marker Period ... 34, 107
Maximum Information Bit Throughput 59
Measured external clock ... 37
Message Length ... 80, 147
Midamble Code ID ... 40, 113
Midamble Shift ... 81, 142, 148
Modulation .. 61, 162
Multiple Chip Clock Mode 36

N
Number of channels .. 11
Number of Channels (DCH) 48
Number of Coded Bits Per TTI 61
Number of Dedicated Channels 38, 110
Number of DPCHs .. 38, 110
Number of E-DCH Codes per Time Slots 60
Number of E-DCH Time Slots 60
Number of E-UCCH Channels 75
Number of E-UCCH per TTI 60, 157
Number of HARQ Processes 63, 161
Number of HS-PDSCH Codes per Time Slots 60
Number of HS-PDSCH Time Slots 60
Number of Phy. Chan. Bits per E-UCCH 75
Number of Sync Shift .. 74, 76
Number of Sync Shift & TPC Information Bits 53
Number of TFCI Bits ... 73
Number of Time Slots (DCH) 48, 127
Number of TPC Bits ... 74, 76
E-UCCH ... 76
Number of Users .. 41, 81
Number of Users – TD-SCDMA 116, 116
Nyquist filter .. 24, 94

O
ON/OFF Ratio Marker ... 34, 106
Open File Manager ... 17
Options ... 37
Overwrite Cell Settings ... 22, 85

P
P-CCPCH State ... 44, 133
Pattern ... 70
Phase Rotation ... 40, 113
Physical channels ... 10
Power Ramping ... 20
Power Step ... 78, 152
Power/dB ... 69, 143
PRACH ... 66
PRACH Message Part Power 80, 148
PRACH Select Data List ... 147
PRACH Slot Mode .. 66, 146
PRACH Spreading Factor 80, 149
Predefined Settings ... 22, 37

R
RACH Message Length ... 80, 147
RACH State ... 79, 150
Radio Frame Marker ... 34
Ramp Function ... 28, 89
Ramp Time .. 28, 89
Rate Matching Attribute 52, 124, 131
Read Out Mode ... 77, 141
Recall TD-SCDMA Settings 17
Redundancy Version Parameter 64, 163
Redundancy Version Sequence 65, 163
Repetition Encoder .. 54
Reset All Cells ... 21, 90
Resource Units On Physical Layer 47, 126
Retransmission Sequence 65, 157
Retransmission Sequence Number 65, 75
Retrigger ... 102
Rise Delay ... 29, 89
RMC Configuration ... 57
Roll Off ... 24, 95
Running ... 31
Running - Trigger .. 100

S
Save TD-SCDMA Settings .. 17
Scrambling code ... 11
Scrambling Code ... 39, 114
Select Cell - BS ... 23

Operating Manual 1171.5260.12 — 15

172