CP75X
3U CompactPCI CPU Board
Hardware Revision 3
User Manual - Version 1.0

Made in Germany
By
EMTrust GmbH
General Notes

This User Manual is for your information.

The information contained herein has been checked carefully and is believed to be reliable. However, EMTrust gives no guarantee or warranty concerning the accuracy of spoken information and shall not be responsible for any loss or damage of any nature resulting from the usage of or from reliance upon it.

We are thankful for all suggestions or improvements at any time.

EMTrust reserves the right to make changes in the products or specifications, or both, at any time without notice.

Copyright Notice

Copyright © 2010 by EMTRUST® GmbH. ALL RIGHTS RESERVED!

EMTrust GmbH copyrights this document. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language or computer language, in any form or by any means, or otherwise, any part of this publication without the express written permission of EMTrust GmbH.

Trademark Acknowledgement

AT, DOS, OS/2, VGA are registered trademarks of International Business Machines Corporation.

Intel, Pentium and Atom are registered trademarks of Intel Corporation.

Panel Link and TMDS are registered trademarks of Silicon Image, Inc.

VESA is a registered trademark of Video Electronics Standard Association.

Windows 7, Windows Vista, Windows XP, Windows 95, Windows98 and Windows NT are registered trademarks of Microsoft Corporation.

EMTRUST® is a registered trademark of Trucomp GmbH.

All rights reserved. All other mentioned trademarks are registered trademarks of their owners.
Disclaimer

This document is provided for the general information of the customer. It describes the general functionality of the boards and is not considered as assured characteristics. The written declarations in this specification are not constituent part of any contract.

EMTrust reserves the right to modify the information contained in this manual as necessary and the customer should ensure that he has the most recent revision of this document.

EMTrust makes no warranty for the use of its products and bears no responsibility for any errors, which may appear in this document. The customer should be on notice that the field of personal computers is the subject of many patents held by different parties. Customers must ensure that they take appropriate action so that their use of the products does not infringe upon any patents. It is the policy of EMTrust to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

EMTrust assumes no responsibility for circuits, descriptions and tables within this document as far as patents or other rights of third parties are concerned.

Life Support Applications

EMTrust’s products are not intended for being used as critical components in life support appliances, devices or systems in which the failing of an EMTrust product could be expected to result in personal injury.

FCC and CE Disclaimer

This product cannot be used as a stand-alone product!

Therefore it has to be integrated together with other products like power-supplies, mass storage devices (i.e. hard disks), etc. to be functional.

To meet FCC and/or CE requirements every component as well as the combination of all components has to be validated against all standards required for the end product.

In order to meet FCC and/or CE requirements this product has to be integrated into a proper housing, which provides appropriate shielding and insulation.
It is on the customer’s sole responsibility to assure that his end-product meets all required standards.

EMTrust gives no warranty at all that their products will meet the FCC and CE standards when used in combination with other third party products or when used in any other way as specified.

Limited Warranty

This product will be free from defects in workmanship and material under normal and proper use for the period of time defined in our General Terms of Business, effective the date of the original shipment from EMTrust GmbH.

In the event of a warranty claim for defects, which appear within the warranty period, customer shall deliver the product along with proof of purchase to the original place of purchase, shipping prepaid. Repair, replacement or refund of the purchase price of the defective product will be at the sole option of the manufacturer. All transportation risks and costs in connection with warranty service are the responsibility of the customer.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES; EXPRESS OR IMPLIED; INCLUDING WITHOUT LIMITATION; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE; TO ANY CUSTOMER; CONSUMER; END USER; PURCHASER; OR OTHERWISE; IN NO EVENT SHALL MANUFACTURER BE LIABLE FOR LOSS OF PROFITS; INDIRECT; SPECIAL; INCIDENTAL; OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF CONTRACT OR WARRANTY; NEGLIGENCE; STRICT LIABILITY OR OTHERWISE.

The remedies for defects in this product are limited to those set forth above. If this limitation of remedies is held by any court to be void or unenforceable, or if no warranty is made, manufacturers liability shall in no event exceed the purchase price of the product giving rise to the claim, regardless of whether such claim is brought in breach of contract or warranty, negligence, strict liability or otherwise.
Table of contents

Preface ..1

1 Product Description ...3
 1.1 General Features ..4
 1.2 Additional Feature for 8HP Version ..7
 1.3 Additional Feature for Versions with Rear I/O8
 1.4 Mechanical Dimensions ...9
 1.5 Environmental Specification ...10

2 Assembly ..11
 2.1 Mechanical Mounting ...15

3 Sockets, Jumper and Features of 4HP Version18
 3.1 DVI-I Connector ..19
 3.2 System LEDs ...21
 3.3 USB Sockets ..22
 3.4 Ethernet Sockets ...23
 3.5 Battery Socket ..25
 3.6 PCI Express Mini Card Socket ...27
 3.7 CompactPCI System Connector ...32
 3.7.1 System Connector J1 ..33
 3.7.2 System Connector J2 ..35

4 Additional Features of 8HP Version37
 4.1 Internal Extension Header COM2 (8HP)38
 4.2 PS/2 Connector (8HP) ..40
 4.3 USB Sockets II (8HP) ..42
 4.4 Ethernet Socket (8HP) ...43
 4.5 COM1 Connector (8HP) ...45
 4.6 SATA Host Receptacle (8HP) ...46

5 Additional Features with Rear I/O Interface49

6 Configuration ..50
 6.1 The Main Page ..51
 6.2 Standard CMOS Features ...52
 6.2.1 SATA Port X ..55
 6.3 Advanced BIOS Features ..57
 6.3.1 CPU Feature ...59
 6.3.2 Hard Disk Boot Priority ..60
 6.3.3 Network Boot Priority ..61
 6.3.4 Boot Options ..62
 6.4 Advanced Chipset Features ..65
 6.5 Integrated Peripherals ...67
 6.5.1 Integrated SATA Device ..69
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.2</td>
<td>Onboard Device</td>
<td>70</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Super IO Device (only 8HP or Rear I/O module)</td>
<td>72</td>
</tr>
<tr>
<td>6.5.4</td>
<td>USB Device Setting</td>
<td>75</td>
</tr>
<tr>
<td>6.6</td>
<td>Power Management Setup</td>
<td>77</td>
</tr>
<tr>
<td>6.7</td>
<td>PnP/PCI Configurations</td>
<td>79</td>
</tr>
<tr>
<td>6.7.1</td>
<td>PCI Express Root Ports</td>
<td>81</td>
</tr>
<tr>
<td>6.8</td>
<td>PC Health Status</td>
<td>82</td>
</tr>
<tr>
<td>6.9</td>
<td>Frequency Control</td>
<td>84</td>
</tr>
<tr>
<td>Appendix 1</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Appendix 2</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Appendix 3</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Appendix 4</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Appendix 5</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>
Preface

Read This First

About this guide
This manual describes the 3U CompactPCI CPU Board, its goal is to describe the CP75X, how it works, how to integrate it and how to use it.

Safety First

Danger
The red Danger sign warns you when a wrong or missing action dramatically endangers your life or health. The used components as well as the peripheral components could be destroyed.

Warning
The orange Warning sign warns you when a wrong or missing action could seriously harm your health or destroy the used components.

Caution
The yellow Caution sign warns you when a wrong or missing action could damage the component.
The yellow ESD sign draws your attention that static-sensitive parts of the component could be destroyed. Unpack shielded components only with ESD protections like an ESD wrist strap.

The EMTrust Note gives you more information and advice for optimal use of this product.

For example it helps you to purchase necessary or optional accessories.
1 Product Description

In the first chapter you will get a glance of all the integrated features. For further information and a brief description of all the possible changes and extensions please refer to the corresponding chapter.
1.1 General Features

Processor Support

Intel® Core™ 2 Duo
Standard:
SP9300 (2x 2.26 GHz/1066 MHz/6 MB cache/25 W TDP)
Optional:
SL9400 (2x 1.86 GHz/1066 MHz/6 MB cache/17 W TDP)
SU9300 (2x 1.2 GHz/800 MHz/3 MB cache/10 W TDP)

Intel® Celeron® M
Standard:
C723 (1.2 GHz/800 MHz/1 MB cache/10 W TDP)
Optional:
C722 (1.2 GHz/800 MHz/1 MB cache/5.5 W TDP)

Chipset
Mobile Intel® GS45 Express Chipset with Intel® ICH9M

Integrated Bios
SPI-Flash-BIOS using Award BIOS from Phoenix

Ram Support
The Intel® Mobile GS45 Express Chipset supports 800 and 1066 MHz SO-DIMM DDR3 modules. In dual channel mode up to 8GB.

Video Interfaces
Intel Chipset Graphic Media Accelerator Gen. 5
DVI-I
Analog up to QXGA (2048px × 1536px)
Digital up to UXGA (1600px × 1200px)
Ethernet Controller
Intel® 82567 Family Gigabit Ethernet Controller (ETH 1)
Intel® 82574 Family Gigabit Ethernet Controller (ETH 2)
Intel® 82574 Family Gigabit Ethernet Controller (ETH 3)
for Rear I/O (order option)
Intel® 82574 Family Gigabit Ethernet Controller (ETH 4)
only on 8 HP version

USB Support
8 USB ports compliant to USB-Specification 1.1/2.0 with
over-current control allocated as
 2 USB ports on the board provided as 2 single
 connectors
 4 USB ports to Board-to-Board connector
 1 USB port routed to PCI Express Mini Card (self
 powered)
 1 USB port routed to Rear I/O (order option)

PCI Express Mini Card socket
PCI Express Mini Card socket with additional SATA and
USB 2.0 support.

Bus Support
CompactPCI according to PICMG 2.0 R3.0
Universal (3.3V/5V) PCI VI/O voltage
Rear I/O “E” interface (order option)
Support for 7 PCI REQ/GNT pairs
Supports PCI Rev 2.3 Specification at 33 MHz / 32bit

Storage Support
4 SATA ports with data throughput up to 300MB/s divided
into
 2 SATA ports to Rear I/O (order option)
 1 SATA port routed to PCI Express Mini Card
 1 SATA port to Board-to-Board connector
Cooling

4HP version: passive cooled (additional forced air-flow required to comply with specified temperature range)

8HP version: active cooled

Power Supply

Supplied via CompactPCI bus

3.3 V, 5 V and PCI VI/O voltage
1.2 Additional Feature for 8HP Version

The 8HP version uses the Board-to-Board connector to enhance the board capabilities.

3 USB ports compliant to USB-Specification 1.1/2.0 with over-current control for 3 single front connectors
1 SATA port on SATA host receptacle
Intel® 82574 Family Gigabit Ethernet Controller (ETH 4) for Gigabit Ethernet front connector
2 COM ports for 1 single front connector and internal extension header
1 LPT port for internal extension header
PS/2 support*

*Please note:

For PS/2 support the CP75 needs an appropriate BIOS version with Keyboard Controller Support (KBC-support).

The BIOS version with KBC-support will only boot-up with a present Keyboard Controller. Please ensure for a successful boot-up that the Extension Board of 8HP variant or the Rear I/O module is connected.
1.3 Additional Feature for Versions with Rear I/O

The Rear I/O “E” interface is an order option for the 4HP and 8HP version.

1 USB port compliant to USB-Specification 1.1/2.0 with over-current control for Rear I/O module
2 SATA ports for Rear I/O module
Intel® 82574 Family Gigabit Ethernet Controller (ETH 3) for Gigabit Ethernet connector on Rear I/O module
Analog VGA (shared with front-panel VGA)
PS/2 support via Rear I/O module*

*Please note:

For PS/2 support the CP75 needs an appropriate BIOS version with Keyboard Controller Support (KBC-support).

The BIOS version with KBC-support will only boot-up with a present Keyboard Controller. Please ensure for a successful boot-up that the Extension Board of 8HP variant or the Rear I/O module is connected.
1.4 Mechanical Dimensions

Size
213 mm × 129 mm overall

Max. Height
4HP: 20.32 mm
8HP: 40.64 mm

Fig. 1: Dimensions of CPU Board
1.5 Environmental Specification

Max. Operating Temperature

0°C to 55°C ambient or
0°C to 70°C at any point on the modules surface with adequate airflow

Other Operating Temperature Ranges upon request

Max. Storage Temperature

-20°C to +100°C

Max. Humidity

Non-condensing
Working 80% / Storage 95%
2 Assembly

The sockets and connectors you can use to build up our system are specified in chapter 4. The needs of your peripheral hardware can be fitted by the BIOS Configuration described in chapter 5.

CAUTION
Please note to prevent loss of warranty:
Do not remove the Heatsink, the 8HP daughter board or break any seal.

4HP Front View

4HP Top View
4HP Side View

Fig. 4: 4HP Side View

4HP Rear View

Fig. 5: 4HP Rear View

4HP Bottom View

Fig. 6: 4HP Bottom View
8HP Front View

Fig. 7: 8HP Front View

8HP Top View

Fig. 8: 8HP Top View

8HP Side View

Fig. 9: 8HP Side View
8HP Rear View

Fig. 10: 8HP Rear View

8HP Bottom View

Fig. 11: 8HP Bottom View
2.1 Mechanical Mounting

For further information please consult the PICMG CompactPCI Specifications.

Please use only 3U System Slots (marked with the triangle and red guide rails).

The CPU board should slide smooth into the housing.

Rear I/O functionality is only appropriable with a suitable Backplane.

CAUTION

Please power off system before installing or replacing of the CPU board.
Assembly: First slide CPU board in the System Slot and pull the In/Ejector handle upwards.

Then tighten the screw according to the position numbers.
Release: First loosen the screw according to the position numbers.

Then press the In/Ejector handle down and the CPU board will be released automatically.

Remove the board from the System Slot.

Fig. 13: Remove CPU Board
3 Sockets, Jumper and Features of 4HP Version

The following schedule contains all the necessary information to integrate the CPU board into your system housing.

On the left side of the page you will see the position on the board (red mark) and on the right side a magnified image of the explained item.

The explanation supplies you with general information, electrical specifications and a pin allocation table.
3.1 DVI-I Connector

The DVI-I delivers analog and digital signals.

![DVI-I Connector](image)

Pin Assignment Table

<table>
<thead>
<tr>
<th>Pin</th>
<th>DVI Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX2-</td>
</tr>
<tr>
<td>2</td>
<td>TX2+</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
</tr>
<tr>
<td>6</td>
<td>DDC-CLK</td>
</tr>
<tr>
<td>7</td>
<td>DDC-DATA</td>
</tr>
<tr>
<td>8</td>
<td>VSYNC</td>
</tr>
<tr>
<td>9</td>
<td>TX1-</td>
</tr>
<tr>
<td>10</td>
<td>TX1+</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>NC</td>
</tr>
<tr>
<td>14</td>
<td>5V (Fuse)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>HOTPLUG</td>
</tr>
<tr>
<td>17</td>
<td>TX0-</td>
</tr>
<tr>
<td>18</td>
<td>TX0+</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>20</td>
<td>NC</td>
</tr>
<tr>
<td>21</td>
<td>NC</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
</tr>
<tr>
<td>23</td>
<td>CLK+</td>
</tr>
<tr>
<td>24</td>
<td>CLK-</td>
</tr>
<tr>
<td>C1</td>
<td>RED</td>
</tr>
<tr>
<td>C2</td>
<td>GREEN</td>
</tr>
<tr>
<td>C3</td>
<td>BLUE</td>
</tr>
<tr>
<td>C4</td>
<td>HSYNC</td>
</tr>
<tr>
<td>C5</td>
<td>GND</td>
</tr>
</tbody>
</table>

Tab. 1: DVI-I

Note: DDC-CLK and DDC-DATA should be connected to DVI-Displays only. VGA monitors are not connect to DDC-CLK or DDC-DATA!
3.2 System LEDs

The System LEDs show the system status and the HDD activity.

<table>
<thead>
<tr>
<th>PWR</th>
<th>Green</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>CP75X off</td>
<td>No Error</td>
</tr>
<tr>
<td>On</td>
<td>CP75X on</td>
<td>Error</td>
</tr>
</tbody>
</table>

Tab. 2: PWR LED

<table>
<thead>
<tr>
<th>HDD</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Serial ATA drive activity</td>
</tr>
<tr>
<td>Blink</td>
<td>At least one drive active</td>
</tr>
<tr>
<td>On</td>
<td>Heavy drive activity</td>
</tr>
</tbody>
</table>

Tab. 3: HDD LED
3.3 USB Sockets

The USB Sockets are compliant to the USB 1.1 and USB 2.0 specification.
3.4 Ethernet Sockets

Ethernet socket ETH1 is connected to an Intel 82567LM Gigabit Ethernet Controller.

Ethernet socket ETH2 is connected to an Intel 82574IT Gigabit Ethernet Controller.

Fig. 19: Ethernet Sockets Detail

Fig. 20: Ethernet Socket Schematic

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXD0+</td>
</tr>
<tr>
<td>2</td>
<td>TXD0-</td>
</tr>
<tr>
<td>3</td>
<td>TXD1+</td>
</tr>
<tr>
<td>4</td>
<td>TXD2+</td>
</tr>
<tr>
<td>5</td>
<td>TXD2-</td>
</tr>
</tbody>
</table>
Orange LED

Speed LED is on during 1 Gbit transmission and switched off during 10 / 100 Mbit transmission.

Green LED

Link / Activity LED is permanently on to indicate that there is an active connection on the Ethernet port. LED flashes during communication with Ethernet networks.
3.5 Battery Socket

The battery buffers the Real Time Clock and the BIOS settings.

WARNING

DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED.

Use only Lithium cells CR2032.
Assure right polarity according to the figure 32 below.
For proper function of the board change the battery every five years.

CAUTION

Please note to prevent loss of warranty:
Do not remove the Heatsink, the 8HP daughter board or break any seal.
For the battery replacement use RMA procedure.
3.6 PCI Express Mini Card Socket

As default one PCI Express lane, a USB port and a SATA port are routed to the Mini Card Socket.

Fig. 23: PCI Express Mini Card Socket Detail

Fig. 24: PCI Express Mini Card Socket Schematic
Never insert PCI Express Mini Cards which connect 3.3V with 3.3Vaux.
This may damage the CPU Board.

CAUTION

Never insert PCI Express Mini Cards where Pin´s 39, 41, 47 or 49 are connected. These pin´s must be unconnected. If you need to use a PCI Express Mini Card where these pin´s are connected, please contact EMTrust for further instructions.
This may damage the CPU Board.
EMTrust recommends M2.5 Torx Screws with a screw locking and a maximum tightening torque of 0.5 Nm.

Assembly:
First slide Mini Card in the socket.

Then press the card in direction to the board.

Then tighten the screw according to the position numbers.
Release: First remove both screws (1/2).

Then the Mini Card will set upright automatically (3).

Remove the card form the socket.

Fig. 27:Remove PCI Express Mini Card

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WAKE#</td>
</tr>
<tr>
<td>2</td>
<td>3.3V</td>
</tr>
<tr>
<td>3</td>
<td>N.C.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>N.C.</td>
</tr>
<tr>
<td>6</td>
<td>1.5V</td>
</tr>
<tr>
<td>7</td>
<td>CLKREQ#</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>N.C.</td>
</tr>
<tr>
<td>11</td>
<td>PCIE_CLK_0-</td>
</tr>
<tr>
<td>12</td>
<td>N.C.</td>
</tr>
<tr>
<td>13</td>
<td>PCIE_CLK_0+</td>
</tr>
<tr>
<td>14</td>
<td>N.C.</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>N.C.</td>
</tr>
<tr>
<td>17</td>
<td>N.C.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>N.C.</td>
</tr>
<tr>
<td>20</td>
<td>Reserved</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>PERST#</td>
</tr>
<tr>
<td>23</td>
<td>PCIE3_RX-</td>
</tr>
<tr>
<td>24</td>
<td>3.3Vaux</td>
</tr>
<tr>
<td>25</td>
<td>PCIE3_RX+</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
</tr>
<tr>
<td>28</td>
<td>1.5V</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
</tr>
<tr>
<td>30</td>
<td>SMB_CLK</td>
</tr>
<tr>
<td>31</td>
<td>PCIE3_TX-</td>
</tr>
<tr>
<td>32</td>
<td>SMB_DATA</td>
</tr>
<tr>
<td>33</td>
<td>PCIE3_TX+</td>
</tr>
<tr>
<td>34</td>
<td>GND</td>
</tr>
<tr>
<td>35</td>
<td>GND</td>
</tr>
<tr>
<td>36</td>
<td>USB_D-*</td>
</tr>
<tr>
<td>37</td>
<td>GND*</td>
</tr>
<tr>
<td>38</td>
<td>USB_D+*</td>
</tr>
<tr>
<td>39</td>
<td>SATA_RXN1*</td>
</tr>
<tr>
<td>40</td>
<td>GND</td>
</tr>
<tr>
<td>41</td>
<td>SATA_RXP1*</td>
</tr>
<tr>
<td>42</td>
<td>N.C.</td>
</tr>
<tr>
<td>43</td>
<td>GND*</td>
</tr>
<tr>
<td>44</td>
<td>N.C.</td>
</tr>
<tr>
<td>45</td>
<td>GND*</td>
</tr>
<tr>
<td>46</td>
<td>N.C.</td>
</tr>
<tr>
<td>47</td>
<td>SATA_TXN1*</td>
</tr>
<tr>
<td>48</td>
<td>1.5V</td>
</tr>
<tr>
<td>49</td>
<td>SATA_TXP1*</td>
</tr>
<tr>
<td>50</td>
<td>GND</td>
</tr>
<tr>
<td>51</td>
<td>GND*</td>
</tr>
<tr>
<td>52</td>
<td>3.3V</td>
</tr>
</tbody>
</table>

* Additional signals divergent to the PCI Express Mini Card specification.
3.7 CompactPCI System Connector

The pin assignment of the CompactPCI System connector without Rear I/O feature.

The System connector consists of two single connectors J1 and J2.

The CP75X does not support the following signals:

TCK, TMS, TRST#, TDO, TDI, INTp, INTS, IPMB_PWR, REQ64#, ENUM#, ACK64#, M66EN and HEALTHY#
3.7.1 System Connector J1

Fig. 28: J1 Detail

Fig. 29: J1 Schematic
<table>
<thead>
<tr>
<th>Pin</th>
<th>Row A</th>
<th>Row B</th>
<th>Row C</th>
<th>Row D</th>
<th>Row E</th>
<th>Row F</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-25</td>
<td>+5V</td>
<td>REQ64#</td>
<td>ENUM#</td>
<td>+3.3V</td>
<td>+5V</td>
<td>Shield</td>
</tr>
<tr>
<td>J1-24</td>
<td>AD[1]</td>
<td>+5V</td>
<td>V(I / O)</td>
<td>AD[0]</td>
<td>ACK64#</td>
<td>Shield</td>
</tr>
<tr>
<td>J1-18</td>
<td>SERR#</td>
<td>GND</td>
<td>+3.3V</td>
<td>PAR</td>
<td>C / BE[1]#</td>
<td>Shield</td>
</tr>
<tr>
<td>J1-17</td>
<td></td>
<td>_ipmb_scl</td>
<td>IPMB SDA</td>
<td>GND</td>
<td>PERR#</td>
<td>Shield</td>
</tr>
<tr>
<td>J1-16</td>
<td>DEVSEL#</td>
<td>GND</td>
<td>V(I/O)</td>
<td>STOP#</td>
<td>LOCK#</td>
<td>Shield</td>
</tr>
<tr>
<td>J1-15</td>
<td></td>
<td>+3.3V</td>
<td>FRAME#</td>
<td>IRDY#</td>
<td>GND</td>
<td>TRDY#</td>
</tr>
<tr>
<td>J1-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 6:J1
3.7.2 System Connector J2

Fig. 30: J2 Detail

Fig. 31: J2 Schematic
<table>
<thead>
<tr>
<th>Pin</th>
<th>Row A</th>
<th>Row B</th>
<th>Row C</th>
<th>Row D</th>
<th>Row E</th>
<th>Row F</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2-22</td>
<td>(GA4)</td>
<td>(GA3)</td>
<td>(GA2)</td>
<td>(GA1)</td>
<td>(GA0)</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-21</td>
<td>CLK6</td>
<td>GND</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-20</td>
<td>CLK5</td>
<td>GND</td>
<td>N.C.*</td>
<td>GND</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-19</td>
<td>GND</td>
<td>GND</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-18</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-17</td>
<td>N.C.*</td>
<td>GND</td>
<td>PRST_m</td>
<td>REQ6_m</td>
<td>GNT6_m</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-16</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>DEG_m</td>
<td>GND</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-15</td>
<td>N.C.*</td>
<td>GND</td>
<td>FAL_m</td>
<td>REQ5_m</td>
<td>GNT5_m</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-14</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-13</td>
<td>N.C.*</td>
<td>GND</td>
<td>V(I/O)</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-12</td>
<td>+3V3SB</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>+5V</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-11</td>
<td>N.C.*</td>
<td>GND</td>
<td>V(I/O)</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-10</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>+5V</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-09</td>
<td>N.C.*</td>
<td>GND</td>
<td>V(I/O)</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-08</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>+3V3</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-07</td>
<td>N.C.*</td>
<td>GND</td>
<td>V(I/O)</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-06</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-05</td>
<td>N.C.*</td>
<td>GND</td>
<td>V(I/O)</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-04</td>
<td>V(I/O)</td>
<td>N.C.*</td>
<td>N.C.*</td>
<td>GND</td>
<td>N.C.*</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-03</td>
<td>CLK4</td>
<td>GND</td>
<td>GNT3_m</td>
<td>REQ4_m</td>
<td>GNT4_m</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-02</td>
<td>CLK2</td>
<td>CLK3</td>
<td>SYSEN_m</td>
<td>GNT2_m</td>
<td>REQ3_m</td>
<td>Shield</td>
</tr>
<tr>
<td>J2-01</td>
<td>CLK1</td>
<td>GND</td>
<td>REQ1_m</td>
<td>GNT1_m</td>
<td>REQ2_m</td>
<td>Shield</td>
</tr>
</tbody>
</table>

*Not connected in Non-Rear I/O versions

For more information about the additional signals of the Rear I/O versions, please contact EMTrust sales department.
4 Additional Features of 8HP Version

This chapter describes the additional features of the 8HP version.
4.1 Internal Extension Header COM2 (8HP)

Fig. 32: Internal Extension Header Detail

Pin	Signal
1 | DCD
2 | DSR
3 | RxD
4 | RTS
5 | TxD
6 | CTS
7 | DTR
8 | RI
9 | +5V
10 | GND
11 | LPT_AFD_m
12 | LPT_INIT_m
13 | LPT_SLIN_m
14 | LPT_STB_m
15 | LPT_BUSY
It is recommended to use the IPS-PPE12-C.
4.2 PS/2 Connector (8HP)

The PS/2 connector for mouse and keyboard.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KBDATA</td>
</tr>
<tr>
<td>2</td>
<td>MSDATA</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>VCC_KB</td>
</tr>
<tr>
<td>5</td>
<td>KBCLK</td>
</tr>
<tr>
<td>6</td>
<td>MSCLK</td>
</tr>
</tbody>
</table>

Fig. 34: PS/2 Detail

Fig. 35: PS/2 Schematic
Please note:

For PS/2 support the CP75 needs an appropriate BIOS version with Keyboard Controller Support (KBC-support).
4.3 USB Sockets II (8HP)

The USB Sockets are compliant to the USB 1.1 and USB 2.0 specification.
4.4 Ethernet Socket (8HP)

The Ethernet socket ETH3 uses a Gigabit Ethernet Controller Intel 82574IT.

Fig. 38: Ethernet Socket 8HP Detail

Fig. 39: Ethernet Socket Schematic
Orange LED

Speed LED is on during 1 Gbit transmission and switched off during 10 / 100 Mbit transmission.

Green LED

Link / Activity LED is permanently on to indicate that there is an active connection on the Ethernet port. LED flashes during communication with Ethernet networks.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXD0+</td>
</tr>
<tr>
<td>2</td>
<td>TXD0-</td>
</tr>
<tr>
<td>3</td>
<td>TXD1+</td>
</tr>
<tr>
<td>4</td>
<td>TXD2+</td>
</tr>
<tr>
<td>5</td>
<td>TXD2-</td>
</tr>
<tr>
<td>6</td>
<td>TXD1-</td>
</tr>
<tr>
<td>7</td>
<td>TXD3+</td>
</tr>
<tr>
<td>8</td>
<td>TXD3-</td>
</tr>
</tbody>
</table>

Tab. 10: Ethernet Socket
4.5 COM1 Connector (8HP)

![COM1 Connector 8HP Detail](image1)

![COM Connector Schematic](image2)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
</tr>
</tbody>
</table>

Tab. 11:COM
4.6 SATA Host Receptacle (8HP)

![Fig. 42: SATA Host Receptacle Detail](image)

![Fig. 43: SATA Host Receptacle Schematic](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>DATATX0+</td>
</tr>
<tr>
<td>3</td>
<td>DATA0TX0-</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>DATARX0-</td>
</tr>
<tr>
<td>6</td>
<td>DATARX0+</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>3.3V</td>
</tr>
<tr>
<td>12</td>
<td>3.3V</td>
</tr>
<tr>
<td>13</td>
<td>3.3V</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>5V</td>
</tr>
<tr>
<td>18</td>
<td>5V</td>
</tr>
<tr>
<td>19</td>
<td>5V</td>
</tr>
</tbody>
</table>
EMTrust recommends M3x4 Torx Screws with a screw locking and a maximum tightening torque of 0.5 Nm.

Please ensure that the bottom side of the hard disk is electrically insulated.

In order to insulate the bottom side of the hard disk use only non-electrostatic foil.

Assembly: First preassemble the HDD.

CAUTION

Fig. 44: Preassemble HDD
Then lower the preassembled HDD onto the carrier board and carefully slide the HDD towards the host receptacle to connect the HDD.

Fig. 45: Connect HDD

Then tighten the screw crosswise.

Fig. 46: Mount HDD

Release: First release the screws crosswise.

Then slide the HDD carefully away.
5 Additional Features with Rear I/O Interface

This chapter describes the additional features of the Rear I/O interface.

The additional features:

1 USB ports compliant to USB-Specification 1.1/2.0 with over-current control
2 SATA ports
Gigabit Ethernet port (ETH 3)
Analog VGA (shared with front-panel VGA) without DDC-Support
SM bus support
1 PCI Express lane (x1)

To use all the Rear I/O features you need to order a EMTrust Rear I/O Extension Card.
6 Configuration

This Chapter explains the BIOS settings to configure your Panel Board.

Enter the BIOS
During the boot procedure you can enter the BIOS menu while pressing the key.

Please note the BIOS feature set will vary using different CPUs and used Extensions e.g. Virtualization, multi core and interface functions.
6.1 The Main Page

Award BIOS ROM has a built-in Setup program that allows users to modify the basic system configurations. This type of information is stored in battery-backed CMOS RAM, so that Setup information is retained when the power is turned off.

Once you enter Award® BIOS CMOS Setup Utility, the Main Menu (Fig. 47:Main BIOS Page) will appear on the screen. The Main Menu allows you to select from thirteen different setup functions. Two of these functions are to be used to exit the BIOS (F10 key save and exit, or ESC key exit without saving).

The Main BIOS setup screen is shown below.

![Main BIOS Setup Screen]

Use arrow keys to select any item and press [Enter] to accept or to enter a submenu for detail settings.

<F7>

<F7> key can be used in any Setup page to restore the Defaults Settings.
6.2 Standard CMOS Features

Use this Menu for basic system configurations.
Use the <Arrow> keys to highlight a Standard CMOS Features option.

The Standard CMOS Features Screen is shown below.

Date
The date format is [Weekday] [Month] [Day] [Year].
Change the day, month and year to the actual date.

Time
The time format is [Hour] [Minute] [Second]. (Format: 24 hours)
Change the hour, minute and second to the actual time.

SATA Port X
For the description of SATA Port X refer to chapter 6.2.1.
Halt On
During POST, the computer stops if the BIOS has detected a hardware error. You can set the BIOS to ignore certain errors during POST and continue the boot-up process.

The following options are available:
[No Errors]
POST does not stop for any error.

[All Errors]
If the BIOS detect any non-fatal error, POST will stop and prompts you to take corrective action.

[All, But Keyboard]
POST does not stop if a keyboard error occurs, but stops for all other errors.

Total Memory
Shows the amount of available system memory.

RearIO Configuration
Shows the used RearIO Configuration.

Attached Rear I/O Module
Shows the version of the used REARI/O Module.

Attached 8HP Module
Shows the version of the used 8HP Module.

PCB Revision
Shows the used PCB Revision.
BIOS build date

Shows the build date of the used BIOS.

RELEASE-Version*

Shows the used BIOS Version and if it supports a Keyboard Controller (KBC-support).

Please note:

For PS/2 support the CP75 needs an appropriate BIOS version with Keyboard Controller Support (KBC-support).

The BIOS version with KBC-support will only boot-up with a present Keyboard Controller. Please ensure for a successful boot-up that the Extension Board of 8HP variant or the Rear I/O module is connected.
6.2.1 SATA Port X

Enter the next page for detailed hard drive settings. The BIOS supports up to four SATA drives. The BIOS can automatically detect the parameters of the drive and will set the optimum operating conditions of almost all SATA drives. The BIOS will detect the drive parameters during power-on self-test (POST), every time the system boots. By pressing [ENTER], the BIOS will show the SATA channel submenu. It shows the respective SATA device information except for e.g. CD ROM or similar devices.

SATA HDD Auto-Detection

This command reads and displays the respective disk information and parameters again.

SATA Port X

The CP75 Board supports only SATA drives. The default setting is [Auto]. Choose [None] to deactivate or [Manual] for manual setting of the SATA Port.
Access Mode

The default setting of Access Mode is [Auto]. Choose [CHS], [LBA] or [Large] when needed for your drive. If the Access Mode is set to [CHS] and the SATA Port is set to [Manual] you can set the harddisk settings by hand.

We recommend to set [AUTO] for all drives.
6.3 Advanced BIOS Features

Use this menu to set the Advanced BIOS Features available on your system.

CPU Feature

For the description of the CPU Feature refer to chapter 6.3.1.

Hard Disk Boot Priority

For the description of the Hard Disk Boot Priority refer to chapter 6.3.2.

Network Boot Priority

For the description of the Network Boot Priority refer to chapter 6.3.3.

Boot Options

For the description of the Boot Options refer to chapter 6.3.4.

CPU L3 Cache

The default value is [Enabled]. When [Disabled] is chosen it forces the L3 cache in off-state.
Gate A20 Option (Only available with KBC supporting BIOS)
The default value is [Fast]. When [Normal], it forces the system to use the slower keyboard controller for the memory handling.

Security Option
The default value is [Setup].
When [System] is chosen the set BIOS password is needed for boot up and to enter Setup.
When [Setup] is chosen the set BIOS password is needed to enter Setup.

APIC Mode
The default is [Enable].
When [Disabled], it deactives the APIC (Advanced Programmable Interrupt Controller) functions.

MPS Version Control For OS
The default is [1.4].
If your OS needs version 1.1, change the setting to [1.1].
6.3.1 CPU Feature

Displays a menu to set the CPU Features.

![CPU Feature Menu](image)

Execute Disable Bit
The default value is [Enabled]
When [Disabled], it forces the XD feature flag to always return 0.

Virtualization Technology (depends on processor support)
The default value is [Enabled].
The second setting is [Disabled], if function is not needed.

Core Multicore-Processing (depends on processor support)
The default value is [Enabled].
The second setting is [Disabled], if function is not needed.
6.3.2 Hard Disk Boot Priority

This option allows the user to control the order of the boot devices.

Use <UP> or <DOWN> to select a device, then change priority by pressing <+> to move it up, or <-> to move it down the list. Press <ESC> to exit this menu.
6.3.3 Network Boot Priority

This option allows the user to control the order of the network boot devices.

Use <UP> or <DOWN> to select a device, then change priority by pressing <+> to move it up, or <-> to move it down the list. Press <ESC> to exit this menu.
6.3.4 Boot Options

Displays a menu to set the order in which devices are checked for boot capabilities.

For Example:
When [Floppy] is selected, the BIOS attempt to load the Operating System from a Floppy.
When [CDROM] is selected, the Operating System will be loaded from the CDROM; all other bootable add-in cards are displayed in numerical order.
First Boot Device
This item [Fig. 54:Boot Options Page] allows you to set the sequence of boot devices where BIOS attempt to load the OS.

If the first boot-up device should be changed for the next boot-up, the boot menu can be used.

Press <ESC> at the beginning of the boot-up sequence and change the Boot First device in the boot menu.

Second Boot Device
Select the device that is checked second for boot.

Third Boot Device
Select the device that is checked third for boot.

Boot Other Device
The default value is [Enabled].
Two options are available: [Enabled] and [Disabled].

Full Screen Graphic
Select the full-screen graphic to be displayed during system starts up instead of text messages.
The default value is [EMTrust]. Choose [None] to display the messages during system start up.

Small POST Graphic
This item enables you to show the company logo on the boot up screen if option Full screen graphic [NONE] is selected.
The default value is [EMTrust]. Choose [None] to boot without POST graphic.

Boot up NumLock Status

When is [On] – At boot up, the Numeric Keypad is in numeric mode.
When is [Off] – At boot up, the Numeric Keypad is in cursor control mode.
The default setting is [On].

Typematic Rate Setting (Only available with KBC supporting BIOS)

When enabled, the typematic rate and typematic delay can be selected. The default setting is [Disabled].

Quick Power On Self Test

When enabled certain tests during the system boot up are skipped. This will decrease the boot-time of the system.
The default setting is [Enabled].

Summary Screen Show

When enabled, a summary of the configuration detected through the BIOS POST, is shown before the OS is loaded.
The default setting is [Disabled].
6.4 Advanced Chipset Features

Use this menu to change the values in the chipset registers and optimize the system performance.

System BIOS Cacheable
You can select [Enabled] or [Disabled]. Selecting [Enabled] allows caching of the video BIOS, resulting in better system performance. However, if any program writes to this memory area, a system error may result. The default setting is [Enabled].

Memory Hole AT 15M-16M
Two options are available: [Enabled] or [Disabled]. This option is used to reserve the memory blocks 15 - 16M for ISA adapter ROM. Some special peripherals need to use a memory block located between 15M and 16M, and this memory block has a size of 1M. We recommend that you disable this option if not required. The default setting is [Disabled].
VT-d
The default value is [Disabled]. The second setting is [Enabled], this activates the Intel® Virtualization Technology for Directed I/O.

GMCH Dev02/F1
The default value is [Enabled]
When [Disabled], it forces the GMCH to disable the 2nd onboard Video Function (Dev02/F1).

On-Chip Frame Buffer Size
Alternatively [32MB], [64MB] or [128MB] setting is available. This setting enhances the VGA parameters for high resolution application.
The default setting is [64MB].

DVMT Mode
Intel® DVMT (Dynamic Video Memory Technology) 3.0
If [Enable] is selected, the select the memory amount, it will no longer be available for system memory.
The default setting is [Enable].

Total GFX Memory
You can select the fixed memory amount for the video memory to [128MB] or [256MB]. If [MAX.] is chosen the video memory size will be maximized according to the available memory size.
The default setting is [128MB].

VGA output selection (Only available with present REAR I/O module)
If a Rear I/O module is connected the VGA output can be switched from [Front] to [RearIO].
The default setting is [Front].
6.5 Integrated Peripherals

Use this menu to specify your settings for integrated peripherals.

Integrated SATA Device
For the description of the Integrated SATA Device refer to chapter 6.5.1.

Onboard Device
For the description of the Onboard Device refer to chapter 6.5.2.

SuperIO Device (Only available with 8HP or Rear I/O module)
For the description of the SuperIO Device refer to chapter 6.5.3.

USB Device Setting
For the description of the USB Device Setting refer to chapter 6.5.4.
Watch Dog Timer Select

If [Disabled] is selected the Watch Dog Timer will be inactive. The Watch Dog Timer can be set from [10 Sec] to [4 Min] and the Mode can be set to [System Reset] or [Power cycle]. [System Reset] causes a System Reset and the [Power cycle] causes a complete Power cycle. Default setting is [Disabled].
6.5.1 Integrated SATA Device

Use this menu to specify your settings for the OnChip SATA Device.

SATA HDD Block Mode
The default is [Enabled] to use fast block mode. If necessary the support can be [Disabled].

SATA DMA transfer access
The default is [Enabled]. If necessary the support can be [Disabled].

SATA Mode
Please set the used SATA Mode [IDE] or [AHCI]. The default is [IDE].

Port 4,5 eSATA Mode
If [Enabled] set the Port 4 and 5 to eSATA Mode. The default is [Disabled].
6.5.2 Onboard Device

Settings to enable or disable the Onboard Devices.

Front ETH1 GbE Device
Three options are available: [Enabled], [Enabled, w/PXE] and [Disabled].
The default setting is [Enabled, w/PXE]. This enables network boot-up with PXE protocol.
[Enabled] activates the GbE Device without PXE protocol. [Disabled] deactivates the GbE Device.

Front ETH2 GbE Device
Two options are available: [Enabled] and [Disabled].
The default setting is [Enabled].

Rear I/O GbE Device (only with Rear I/O module)
Two options are available: [Enabled] and [Disabled].
The default setting is [Enabled].

Front 8HP GbE Device (only 8HP)
Two options are available: [Enabled] and [Disabled].
The default setting is [Enabled].
HD Audio Controller

Two options are available: [Auto] and [Disabled].
The default setting is [Auto].
6.5.3 Super IO Device (only 8HP or Rear I/O module)

Settings to enable or disable the SuperIO Devices.

![Configuring Super IO Device settings.

Serial Port A
Please select the base address and interrupt for Serial Port A or disable it.
These I/O address/Interrupt combinations are possible: [3F8/IRQ4], [2F8/IRQ3], [3E8/IRQ4] or [2E8/IRQ3]
The default setting is [3E8/IRQ4].
The recommended setting is [3E8/IRQ4].

Serial Port B
Please select the base address and interrupt for Serial Port B or disable it.
These I/O address/Interrupt combinations are possible: [3F8/IRQ4], [2F8/IRQ3], [3E8/IRQ4] or [2E8/IRQ3]
The default setting is [Disabled].
The recommended setting is [2E8/IRQ3].

Parallel Port
Please select the base address and interrupt for Parallel Port or disable it.
These I/O address/Interrupt combinations are possible: [378/IRQ7], [278/IRQ5] or [3BC/IRQ7]
The default setting is [Disabled].
The recommended setting is [378/IRQ7].

Parallel Port Mode
The default setting is [SPP].
These port modes are possible: [SPP], [EPP], [ECP], [ECP+EPP] or [Normal]. Choose the preferred mode for your application.

EPP Mode Select
If EPP Mode is selected, the mode can be set to [EPP1.9] or [EPP1.7]. The default setting is [EPP1.7].

ECP Mode Use DMA
If ECP Mode is selected, the DMA channel can be set to [1] or [3]. The default setting is [3].

Rear Serial Port A (only with Rear I/O module)
Please select the base address and interrupt for Rear Serial Port A or disable it.
These I/O address/Interrupt combinations are possible: [3F8/IRQ10], [2F8/IRQ10], [3E8/IRQ10] or [2E8/IRQ10]
The default setting is [3F8/IRQ10].
The recommended setting is [3F8/IRQ10].

Rear Serial Port B (only with Rear I/O module)
Please select the base address and interrupt for Rear Serial Port B or disable it.
These I/O address/Interrupt combinations are possible: [3F8/IRQ11], [2F8/IRQ11], [3E8/IRQ11] or [2E8/IRQ11]
The default setting is [2F8/IRQ11].
The recommended setting is [2F8/IRQ11].
Rear Parallel Port

Please select the base address and interrupt for Rear Parallel Port or disable it.
These I/O address/Interrupt combinations are possible: [378/IRQ5], [278/IRQ5] or [3BC/IRQ5]
The default setting is [278/IRQ5].
The recommended setting is [278/IRQ5].

Parallel Port Mode

The default setting is [SPP].
These port modes are possible: [SPP], [EPP], [ECP], [ECP+EPP] or [Normal]. Choose the preferred mode for your application.

EPP Mode Select

If EPP Mode is selected, the mode can be set to [EPP1.9] or [EPP1.7]. The default setting is [EPP1.7].

ECP Mode Use DMA

If ECP Mode is selected, the DMA channel can be set to [1] or [3]. The default setting is [3].

PS/2 KB/MS input select (Only with KBC supporting BIOS)

If the BIOS has Key Board Controller-support (KBC-support), the PS/2 keyboard and mouse input can be set to [Front] or [RearIO]. The default setting is [Front].
6.5.4 USB Device Setting

Setting to enable or disable the USB Device Setting.

USB 1.0 Controller
Two options are available: [Enabled] and [Disabled]. The default setting is [Enabled].

USB 2.0 Controller
Two options are available: [Enabled] and [Disabled]. The default setting is [Enabled].

USB Operation Mode
Two options are available: [Full/Low Speed] and [High Speed]. The default setting is [High Speed].

USB Keyboard Function
Two options are available: [Enabled] and [Disabled]. If your system contains a USB keyboard, choose [Enabled]. The default setting is [Enabled].

USB Mouse Function
Two options are available: [Enabled] and [Disabled]. If your system contains a USB mouse, choose [Enabled].
The default setting is [Enabled].

USB Storage Function

Two options are available: [Enabled] and [Disabled]. If your system contains a USB Storage device, choose [Enabled]. The default setting is [Enabled].
6.6 Power Management Setup

The Power Management Menu allows you to reduce power consumption. This feature turns off the video display and shuts down the hard disk after a period of inactivity.

ACPI Function

Two options are available: [Enable] and [Disable]. This item allows you to enable/disable the Advanced Configuration and Power Management (ACPI). The default setting is [Enabled].

Video Off Method

The default setting is [DPMS]. Three options are available: (This item selects the way how the monitor is blanked.)

[V/H SYNC+Blank] - This selection will cause the system to turn off the vertical and horizontal synchronization ports and also writes blanks to the video buffer.

[Blank Screen] - This option only writes blanks to the video buffer.

[DPMS] - Display power management signalling according to DMPS specification.
Wake-Up by PCI card
This function enables or disables wake-up by PCI card. Default value is [Disabled].

USB KB Wake-Up From S3
This function enables or disables wake-up from ACPI Suspend Type S3 for USB keyboards. Default value is [Disabled].

Reload Global Timer Events
Reload Global Timer events are I/O events. When they occur, they prevent the system from entering a power saving mode or will wake up the system from such a mode. The system remains alert for anything that occurs to a device which is configured as [Enabled], even when the system is in a power down mode.

COM,LPT Port
This function enables or disables COM/LPT events. Default value is [Disabled].

HPET Support
This function enables or disables the HPET Support. Default value is [Enabled].

HPET Mode
This function selects the HPET Mode. Default value is [32-bit mode]. If your OS support 64-bit mode, choose [64-bit mode].
6.7 PnP/PCI Configurations

This section describes the configuration of the PCI bus system.

PCI (Personal Computer Interconnect) is a bus that allows I/O devices to operate at high speed. This section covers some very technical items and it is strongly recommended that only experienced users should make any changes to the default settings.

Init Display First
The user can choose which device is initialized first as the primary device, an external PCI–graphics card or the [Onboard] graphics controller. Default setting is [PCI Slot].

Resources Controlled By
The Award Plug and Play BIOS has the ability to configure all plug and play compatible devices automatically. If you set this option to [Manual], choose specific resources by following submenus (a sub menu is preceded by an “x”). Two options are available: [Auto (ESCD)] and [Manual]. The default setting is [Auto (ESCD)].
IRQ Resources
When resources are controlled manually, assign each system interrupt a type, depending on the type of device using the interrupt.

PCI/VGA Palette Snoop
Some non-standard VGA cards, such as graphics accelerators or MPEG video cards may not show colors properly. The setting [Enable] should correct this problem. Otherwise leave this with the default setting set to [Disable].

PCI Express Root Ports
For the description of the PCI Express Root Ports Setting refer to chapter 6.7.1.
6.7.1 PCI Express Root Ports

PCI Express Port X
Port default value is [AUTO].

PCI-E Compliancy Mode
Choose [v1.0a] or [v1.0] PCI Express standards
Default value [v1.0a]
6.8 PC Health Status

This Setup screen shows the actual temperature of the system.

![PC Health Status Page](image)

CPU Temperature
Shows the actual temperature of the CPU.

DDR Temperature
Shows the actual temperature below the RAM sockets.

Board Temperature
Shows the actual temperature of the CPU board.

3.3 V
Shows the exact voltage value of the 3.3 V circuit.

5.0 V
Shows the exact voltage value of the 5.0 V circuit.
Fan Speed

Shows the exact speed of the CPU fan (if installed).
6.9 Frequency Control

Spread Spectrum
This function can be enabled to reduce existing electromagnetic interferences.
We recommend the default value [Disabled].
SM Bus Addresses

<table>
<thead>
<tr>
<th>Primary SM bus (ICH9M = Master)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0xD2</td>
<td>Clock generator - CK505</td>
</tr>
<tr>
<td>0xA0</td>
<td>SO-DIMM0 - SPD</td>
</tr>
<tr>
<td>0xA4</td>
<td>SO-DIMM1 - SPD</td>
</tr>
<tr>
<td>tbd</td>
<td>Intel GbE 82574 - 2(^{nd}) FP</td>
</tr>
<tr>
<td>tbd</td>
<td>Intel GbE 82574 - 3(^{rd}) Rear I/O</td>
</tr>
<tr>
<td>0xAA</td>
<td>PCI Express Mini Card Socket</td>
</tr>
<tr>
<td>0xAC</td>
<td>8HP daughter-board EEPROM (only if a 8HP extension is present)</td>
</tr>
<tr>
<td>0xC0</td>
<td>Microchip PIC - I(^{2})C Interface #2</td>
</tr>
<tr>
<td>0xA8</td>
<td>EEPROM for PIC</td>
</tr>
</tbody>
</table>

Tab. 13:Primary SM Bus
Appendix 2

PCI Devices

<table>
<thead>
<tr>
<th>Bus</th>
<th>Device</th>
<th>Func.</th>
<th>Vendor</th>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>0</td>
<td>8086</td>
<td>2a40</td>
<td>Host bridge: Intel Corporation Mobile 4 Series Chipset Memory Controller Hub</td>
</tr>
<tr>
<td>00</td>
<td>02</td>
<td>0</td>
<td>8086</td>
<td>2a42</td>
<td>VGA compatible controller: Intel Corporation Mobile 4 Series Chipset Integrated Graphics Controller</td>
</tr>
<tr>
<td>00</td>
<td>02</td>
<td>1</td>
<td>8086</td>
<td>2a43</td>
<td>Display controller: Intel Corporation Mobile 4 Series Chipset Integrated Graphics Controller</td>
</tr>
<tr>
<td>00</td>
<td>19</td>
<td>0</td>
<td>8086</td>
<td>10f5</td>
<td>Ethernet controller: Intel Corporation 82567LM Gigabit Network Connection</td>
</tr>
<tr>
<td>00</td>
<td>1a</td>
<td>0</td>
<td>8086</td>
<td>2937</td>
<td>USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #4</td>
</tr>
<tr>
<td>00</td>
<td>1a</td>
<td>1</td>
<td>8086</td>
<td>2938</td>
<td>USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #5</td>
</tr>
<tr>
<td>00</td>
<td>1a</td>
<td>2</td>
<td>8086</td>
<td>2939</td>
<td>USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #6</td>
</tr>
<tr>
<td>00</td>
<td>1a</td>
<td>7</td>
<td>8086</td>
<td>293c</td>
<td>USB Controller: Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #2</td>
</tr>
<tr>
<td>00</td>
<td>1b</td>
<td>0</td>
<td>8086</td>
<td>293e</td>
<td>Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller</td>
</tr>
<tr>
<td>00</td>
<td>1c</td>
<td>0</td>
<td>8086</td>
<td>2940</td>
<td>PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 1</td>
</tr>
<tr>
<td>00</td>
<td>1c</td>
<td>1</td>
<td>8086</td>
<td>2942</td>
<td>PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 2</td>
</tr>
<tr>
<td>00</td>
<td>1c</td>
<td>2</td>
<td>8086</td>
<td>2944</td>
<td>PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 3</td>
</tr>
<tr>
<td>00</td>
<td>1c</td>
<td>3</td>
<td>8086</td>
<td>2946</td>
<td>PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 4</td>
</tr>
<tr>
<td>00</td>
<td>1c</td>
<td>4</td>
<td>8086</td>
<td>2948</td>
<td>PCI bridge: Intel Corporation 82801I (ICH9 Family) PCI Express Port 5</td>
</tr>
<tr>
<td>00</td>
<td>1d</td>
<td>0</td>
<td>8086</td>
<td>2934</td>
<td>USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #1</td>
</tr>
<tr>
<td>00</td>
<td>1d</td>
<td>1</td>
<td>8086</td>
<td>2935</td>
<td>USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #2</td>
</tr>
<tr>
<td>Address</td>
<td>Type</td>
<td>Device Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1d 2</td>
<td>USB Controller</td>
<td>Intel Corporation 82801I (ICH9 Family) USB UHCI Controller #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1d 7</td>
<td>USB Controller</td>
<td>Intel Corporation 82801I (ICH9 Family) USB2 EHCI Controller #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1e 0</td>
<td>PCI bridge</td>
<td>Intel Corporation 82801 Mobile PCI Bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1f 0</td>
<td>ISA bridge</td>
<td>Intel Corporation ICH9M-E LPC Interface Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1f 2</td>
<td>IDE interface</td>
<td>Intel Corporation ICH9M/M-E 2 port SATA IDE Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1f 3</td>
<td>SMBus</td>
<td>Intel Corporation 82801I (ICH9 Family) SMBus Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 1f 5</td>
<td>IDE interface</td>
<td>Intel Corporation ICH9M/M-E 2 port SATA IDE Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 00 0</td>
<td>Ethernet controller</td>
<td>Intel Corporation 82574L Gigabit Network Connection (ETH2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 00 0</td>
<td>Ethernet controller</td>
<td>Intel Corporation 82574L Gigabit Network Connection (REAR ETH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 00 0</td>
<td>Mass storage controller</td>
<td>Silicon Image, Inc. Sil 3132 Serial ATA Raid II Controller (REAR I/O module)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 00 0</td>
<td>Ethernet controller</td>
<td>Intel Corporation 82574L Gigabit Network Connection (ETH3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 03 0</td>
<td>PCI bridge</td>
<td>Pericom Semiconductor PCI to PCI Bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 14: PCI Devices
Appendix 3

Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
<th>Proofed to release</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.06.2009</td>
<td>0.0</td>
<td>First draft</td>
<td></td>
</tr>
<tr>
<td>24.06.2009</td>
<td>0.1</td>
<td>First internal release</td>
<td></td>
</tr>
<tr>
<td>23.08.2010</td>
<td>1.0</td>
<td>Production release</td>
<td>Christian Blersch</td>
</tr>
</tbody>
</table>
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>Dimensions of CPU Board</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>4HP Front View</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>4HP Top View</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>4HP Side View</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>4HP Rear View</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>4HP Bottom View</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>8HP Front View</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>8HP Top View</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>8HP Side View</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>8HP Rear View</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>8HP Bottom View</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>Insert CPU Board</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>Remove CPU Board</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>DVI-I Detail</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>DVI-I Schematic</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>System LEDs Detail</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 17</td>
<td>USB Sockets Detail</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 18</td>
<td>USB Socket Schematic</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 19</td>
<td>Ethernet Sockets Detail</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 20</td>
<td>Ethernet Socket Schematic</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 21</td>
<td>Battery Socket Detail</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 22</td>
<td>Battery Socket Schematic</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 23</td>
<td>PCI Express Mini Card Socket Detail</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 24</td>
<td>PCI Express Mini Card Socket Schematic</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 25</td>
<td>Insert PCI Express Mini Card</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 26</td>
<td>Remove PCI Express Mini Card</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 27</td>
<td>Remove PCI Express Mini Card</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 28</td>
<td>J1 Detail</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 29</td>
<td>J1 Schematic</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 30</td>
<td>J2 Detail</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 31</td>
<td>J2 Schematic</td>
<td>35</td>
</tr>
<tr>
<td>Fig. 32</td>
<td>Internal Extension Header Detail</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 33</td>
<td>Internal Extension Header Schematic</td>
<td>38</td>
</tr>
<tr>
<td>Fig. 34</td>
<td>PS/2 Detail</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 35</td>
<td>PS/2 Schematic</td>
<td>40</td>
</tr>
<tr>
<td>Fig. 36</td>
<td>USB Socket 8HP Detail</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 37</td>
<td>USB Socket Detail</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 38</td>
<td>Ethernet Socket 8HP Detail</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 39</td>
<td>Ethernet Socket Schematic</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 40</td>
<td>COM1 Connector 8HP Detail</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 41</td>
<td>COM Connector Schematic</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 42</td>
<td>SATA Host Receptacle Detail</td>
<td>46</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Fig. 43</td>
<td>SATA Host Receptacle Schematic</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 44</td>
<td>Preassemble HDD</td>
<td>47</td>
</tr>
<tr>
<td>Fig. 45</td>
<td>Connect HDD</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 46</td>
<td>Mount HDD</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 47</td>
<td>Main BIOS Page</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 48</td>
<td>Standard CMOS Features Page</td>
<td>52</td>
</tr>
<tr>
<td>Fig. 49</td>
<td>SATA Channel Master Page</td>
<td>55</td>
</tr>
<tr>
<td>Fig. 50</td>
<td>Advanced BIOS Features Page</td>
<td>57</td>
</tr>
<tr>
<td>Fig. 51</td>
<td>CPU Feature Page</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 52</td>
<td>Hard Disk Boot Priority Page</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 53</td>
<td>Hard Disk Boot Priority Page</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 54</td>
<td>Boot Options Page</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 55</td>
<td>Boot Options Detail</td>
<td>62</td>
</tr>
<tr>
<td>Fig. 56</td>
<td>Advanced Chipset Features Page</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 57</td>
<td>Integrated Peripherals Page</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 58</td>
<td>OnChip SATA Device Page</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 59</td>
<td>Onboard Device Page</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 60</td>
<td>SuperIO Device Page</td>
<td>72</td>
</tr>
<tr>
<td>Fig. 61</td>
<td>USB Device Page</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 62</td>
<td>Power Management Setup Page</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 63</td>
<td>PnP/PCI Configurations Page</td>
<td>79</td>
</tr>
<tr>
<td>Fig. 64</td>
<td>PCI Express Root Ports Page</td>
<td>81</td>
</tr>
<tr>
<td>Fig. 65</td>
<td>PC Health Status Page</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 66</td>
<td>Frequency/Voltage Control Page</td>
<td>84</td>
</tr>
</tbody>
</table>
Appendix 5

Index of Tables

Tab. 1: DVI-I ... 20
Tab. 2: PWR LED ... 21
Tab. 3: HDD LED .. 21
Tab. 4: Ethernet ... 24
Tab. 5: PCI Express Mini Card Socket ... 31
Tab. 6: J1 .. 34
Tab. 7: J2 without Rear I/O .. 36
Tab. 8: Internal Extension Header ... 39
Tab. 9: PS/2 .. 40
Tab. 10: Ethernet Socket ... 44
Tab. 11: COM .. 45
Tab. 12: SATA Host Receptacle ... 47
Tab. 13: Primary SM Bus ... 85
Tab. 14: PCI Devices ... 87
Tab. 15: Revision History .. 88
Terminology

(G)MCH (Graphics) Memory Controller Hub

CMOS Complementary metal-oxide-semiconductor - a technology to build circuits like microprocessors

Core The internal base logic in the Mobile Intel® 915 Express chipset (G)MCH

CPU Central Processing Unit or processor

CRT Cathode Ray Tube

DBI Dynamic Bus inversion

DDR2 Second generation Double Data Rate SDRAM memory technology

DDR3 Third generation Double Data Rate SDRAM memory technology

DMA Direct Memory Access, feature that allows hardware subsystems to access system memory independent of the CPU

DMI Direct Media Interface - The chip-to-chip interconnect between the Mobile Intel® 915 Express chipset and the Penryn. It is an Intel Proprietary interface

DVI Digital Visual Interface is the interface specified by the DDWG (Digital Display Working Group)

EMI Electromagnetic Interference

Fast Ethernet Ethernet connection with a frame transfer speed up to 100Mbit/s.
Firmware A computer program that is embedded in a hardware device like a Flash ROM. The computer's BIOS is a firmware.

FSB Front Side Bus - Connection between Mobile Intel® 915 Express chipset and the CPU. Also known as the Host interface.

Gigabit Ethernet Ethernet connection with a frame transfer speed up to 1000Mbit/s.

Host This term is used synonymously with processor

I²C Inter-IC (a two wire serial bus created by Philips)

ICH The I/O Controller Hub component that contains the main PCI interface, LPC interface, USB2, Serial ATA, and other I/O functions. It communicates with the (G)MCH over a proprietary interconnect called DMI.

iDCT Inverse Discrete Cosine Transform, a mathematical function used for applications like image processing

IDE The predecessor of SATA - a parallel bus system for connecting hard disks and other devices.

iHDMI Integrated High Definition Multimedia Interface

Intel® TxT Intel® Trusted Execution Technology - a technology to protect programme execution against software-based attacks.

Intel® VT-d Intel® Virtualization Technology (Intel® VT) for Directed I/O - protecting virtual machines for DMA breaks (a possible threat for data security.)
INTx An interrupt request signal where X stands for interrupts A,B,C and D.

IRDA Infrared Data Association and the acronym of an optical wireless communication interface.

IRQ Interrupt Request - Signal used in a computer system to react to an event occurring during processing.

ITPM Integrated Trusted Platform Model - a security model based on the Trusted Platform Module microcontroller.

KBC Keyboard Controller

Lanes A unidirectional communication point-to-point connection

LCD Liquid Crystal Display

LFP Local Flat Panel

LPC Bus Low Pin Count Bus - Bus to connect low-bandwidth devices to the CPU with only seven signals.

LVDS Low Voltage Differential Signalling - A high speed, low power data transmission standard used for display connections to LCD panels.

NCTF Non-Critical to Function

NTSC National Television Standards Committee - color encoding system use in broadcast television systems.

PAL Phase Alternate Line - color encoding system use in broadcast television systems.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVP</td>
<td>Protected Audio - Video Path for supporting secure playback of Intel HD Audio and Video content - a copy protection system for digital signals.</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect - Parallel computer bus for attaching peripheral devices to a motherboard.</td>
</tr>
<tr>
<td>PCI Express</td>
<td>A standard for expansion interface divided into lanes.</td>
</tr>
<tr>
<td>PIO</td>
<td>Programmed Input/Output is a method of transferring data between the CPU and a peripheral. Used by ATA- / IDE- Interfaces</td>
</tr>
<tr>
<td>POST</td>
<td>Power-on Self Test is a pre-boot sequence to verify and start the computer system.</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>Rank</td>
<td>A unit of DRAM corresponding 4 to 8 devices in parallel. These devices are usually, but not always, mounted on a single side of a SO-DIMM.</td>
</tr>
<tr>
<td>RS-232</td>
<td>A standard for serial communication normally found by the COM – Ports.</td>
</tr>
<tr>
<td>S.M.A.R.T</td>
<td>Self-Monitoring, Analysis, and Reporting Technology - system to provide a higher data security on hard disks.</td>
</tr>
<tr>
<td>SATA</td>
<td>Serial Advanced Technology Attachment - computer bus technology for connecting hard disks and other devices</td>
</tr>
<tr>
<td>SCI</td>
<td>System Control Interrupt</td>
</tr>
<tr>
<td>SDVO</td>
<td>Digital display channel that serially transmits digital display data to an external SDVO device. The SDVO device accepts this serialized format and then translates the data into the appropriate display format (i.e.,</td>
</tr>
</tbody>
</table>
TMDS, LVDS, TV-Out). This interface is not electrically compatible with the previous digital display channel - DVO. For the Mobile Intel® 915 Express chipset family, it will be multiplexed on a portion of the x16 graphics PCI Express Interface.

SDVO Device Third party codec that utilizes SDVO as an input. May have a variety of output formats, including DVI, LVDS, TV-out, etc.

SIM Subscriber Identity Module (Card) used to store information in mobile phones.

SMBus Two-wire bus for low-bandwidth communication on a motherboard.

SO-DIMM Small Outline Dual In-line Memory Module is a form factor for memory modules.

SPI-Flash Non-volatile computer memory that can be electrically erased and reprogrammed via the Serial Peripheral Interface Bus (SPI).

Ultra ATA The predecessor of SATA - a parallel bus system for connecting hard disks and other devices.

VLD Variable Length Decoding

Watchdog A watchdog (timer) is a computer hardware timing device that triggers a system reset if the main program "hangs", in order to keep the computer running.

x1 Refers to a Link or Port with one Physical Lane

x16 Refers to a Link or Port with sixteen Physical Lanes
Classified Index

—A—
Additional Feature for 8HP Version7
Additional Feature for Versions with Rear I/O8
Additional Features for Versions with Rear I/O Interface49
Assembly11

—B—
Battery Socket25
BIOS Advanced BIOS Features57
BIOS Advanced Chipset Features65
BIOS Main Page51
BIOS PC Health Status82
BIOS Standard CMOS Features52
Boot Options62

—C—
COM Connector (8HP)45
CompactPCI System Connector32

—D—
DVI-I Connector19

—E—
Enter the BIOS50
Environmental Specification10
Ethernet Socket23
Ethernet Socket (8HP)43

—F—
Frequency/Voltage Control84

—G—
General Features4

—I—
IDE ...52, 55
Index of Tables91
Integrated Peripherals67
Internal Extension Header COM2 (8HP) ..38

—M—
Mechanical Dimensions9
Mechanical Mounting15
Mini Card27

—O—
Onboard Device70, 75
OnChip SATA Device69

—P—
PCI Devices86
PCI Express Mini Card Socket27
PCI Express Root Ports81
PnP/PCI Configurations79
Power Management77
PS/2 Connector (8HP)40

—R—
Revision History88

—S—
SATA Host Receptacle (8HP)46
SM Bus Addresses85
Sockets, Jumper and Features of 4HP Version18
Super IO Device (8HP only)72
System Connector J133
System Connector J235
System LEDs21

—T—
Table of Figures89

—U—
USB Sockets22
USB Sockets II (8HP)42