R&S® CA250
Bitstream Analysis
Analysis and manipulation of signals at bitstream/symbol stream level
In the field of technical analysis of modern communications signals, the ability to analyze the characteristics of demodulated signals with unknown codings is of major importance. In addition to various symbol stream/bitstream representations, R&S®CA250 provides a large number of powerful analysis algorithms and bitstream manipulation functions.

By selectively using these tools, the user can obtain technical data from the unknown bitstream. This data provides information about the type and content of the analyzed signal. Ideally, it is possible to resolve all aspects of the unknown code, thereby allowing the user to program a specific decoder for the unknown signal (e.g. by using the R&S®GX400ID decoder development environment).
R&S® CA250
Bitstream Analysis

Benefits and key features

Versatile data import and symbol stream/bitstream representation
- Import of various symbol stream/bitstream formats
- Symbol-to-bit mapping and bitstream representation as 0/1 and –/X representation as well as graphical visualization
▷ page 4

Versatile bitstream analysis functions
- Structure analysis
- Statistical methods
▷ page 6

Advanced code analysis functions
- Automatic recognition of channel codings (convolutional, Reed-Solomon codes, etc.)
- Manual expert analysis tools
▷ page 7

Wide variety of processing functions for channel-coded bitstreams
- Standard manipulation such as deletion, inversion, multiplexing and demultiplexing
- Complex bitstream processing methods such as descrambling, deinterleaving
- Processing of channel codings (convolutional, Reed-Solomon and other codes)
▷ page 8

Payload analysis and processing
- Automatic detection of typical payload structures
- Various alphabets
- Digital voice codecs
- Processing of compressed data
▷ page 9

Automation, extensibility and versatility
- Integration of user-specific algorithms into the R&S® CA250 operation sequences
- Programmable script control for performing automatic analysis sequences
- Various user-configurable and extensible functions
▷ page 10
Data import and symbol stream/bitstream representation

R&S®CA250 supports the import of files in different symbol stream and bitstream formats. In symbol stream representation, the symbols generated by the demodulator are displayed according to their valency (line-by-line representation from left to right).

The symbol stream is transferred to a bitstream by means of predefined and user-definable symbol-to-bit mapping specifications.

Symbol stream with four valued symbols (symbol values: 0, 1, 2, 3).

Bitstream in 0/1 representation obtained from a symbol stream after using the natural symbol-to-bit mapping.

Bitstream in –/X representation.
The bitstream representation can be switched between 0/1 and –/X representation and graphical visualization. In addition, it is scalable with respect to size and form (number of lines × number of columns).

If the original symbol streams were obtained by using R&S®GX400, R&S®GX410 or R&S®CA100, each symbol contains quality information that is added during demodulation. This information is transferred to the bitstream generated from the symbol stream and can be visualized in color. The user can easily distinguish between segments with good quality and those with bad quality, where analysis might be less promising.
Structure analysis

For the analysis of bit structures, R&S®CA250 features versatile functions such as autocorrelation and cross-correlation, configurable pattern search, entropy test (Tsallis, Maurer, chi-square), calculations of column sum/parity and line sum/parity.

By using the pattern search, the user can detect and display all possible variations of a bit pattern in the bitstream. The parameterization of tolerance ranges with respect to bit errors for the search allows the algorithm to run successfully even in bitstreams containing bit errors.

Statistical methods

An entropy test is available for analyzing block codes. It involves testing the bitstream with respect to its randomness. Decreases in entropy provide information on the use of a block code with a specific code length. R&S®CA250 offers various statistical analysis methods.

The decreases in entropy in Maurer test (see top representation; search for statistical defects of a random sequence) at the values 15 and 30 substantiate the following: When the bitstream is divided into 15-bit code words, any regular occurrence is revealed (specific code words occur more often than others).

Versatile bitstream analysis functions

Maxima in autocorrelation representation indicate regular, repeating structures (e.g. frame structures) in the bitstream.

The cross-correlation indicates how often a user-defined bit pattern (e.g. a preamble) occurs in a bitstream.
Advanced code analysis functions

Automatic recognition of channel codings (convolutional, Reed-Solomon codes, etc.)
No matter which channel coding, no matter if there are bit errors in the bitstream – R&S®CA250 provides the right tools for recognition of the channel code used. R&S®CA250 features full automatic detection of convolutional, Reed-Solomon and BCH codes.

Manual expert analysis tools
For all of these channel codes, R&S®CA250 provides sophisticated expert analysis tools which give expert analysts the higher level of control and in-depth information they need. Other specific analysis functions for channel codings, such as scrambling and CRC codes, are included. The pictures on this page show a typical analysis flow for a convolutional code.

After removing the convolutional code, further bit inversion and the use of an alphabet (varicode) are sufficient for obtaining readable text.

Convolutional code analysis calculates the most likely generator polynomial set for each position in the bitstream.

By including and using the generator polynomials in the Viterbi decoder, the convolutional coding on the bitstream is reversed.
Wide variety of processing functions for channel-coded bitstreams

The application of the Baudot alphabet to the bitstream from the section “Bit Manipulation” generates readable text and thus confirms that all analysis and bit manipulation steps (demultiplexing, inversion) have been performed successfully.

Bit manipulation
R&S®CA250 offers various alternatives for manipulating the bitstream. If an analysis result is available, a function is provided for applying the analysis result to the bitstream and for beginning the next analysis step. In addition to easier manipulation functions such as selective deletion or bit inversion, the following complex functions are available: conversion from differential coding to absolute coding, decoding of line codes (NRZ-L, NRZ-M, NRZ-S), Boolean operations, multiplexing, demultiplexing, descrambling and deinterleaving.

Advanced decoding functions
In modern data transmission systems, typically several channel coding methods are applied subsequently. Therefore, it is important to have the right decoding functions in order to proceed to the transmitted data. Also in this field R&S®CA250 features a wide range of decoding methods. It includes standard decoders such as Viterbi (for convolutional codes), Reed-Solomon, BCH and CRC decoders and also supports many of the most modern decoding methods such as LDPC and various wideband standards.

Several bit manipulation steps are applied sequentially to extract the content of the signal
Payload analysis and processing

After successful analysis and decoding of a bitstream, its content may be available in plain text. Very often, however, the content is a binary file that requires further processing. By applying file type identification to characteristic bit patterns, the user can determine the type of file that has been extracted (e.g. WAV, ZIP, BMP, PDF, MP3). The user can expand the list of identifiable file types. After the file type has been identified, an appropriate program can be used outside of R&S®CA250 to further process the content.

After successful analysis and decoding of the channel coding layers, the binary content has to be processed according to its type. R&S®CA250 provides a wide variety of tools for this task. The type of the content can be determined using file type identification. This algorithm detects characteristic bit patterns of files, protocols and other payload data structures. R&S®CA250 comes with a library of descriptions for typical payload data (e.g. WAV, ZIP, BMP, PDF, MP3). This library can be easily extended by adding descriptions in .xml format.

Various content types can be processed directly by R&S®CA250. Digital voice is supported with various codecs. Text messages can be easily decoded with numerous alphabet decoders, and even compressed data decoding is supported.

The decoded bitstream was identified to be a compressed ZIP archive with a length of 45,136 bits. The compressed file can be unpacked using the DEFLATE algorithm integrated in R&S®CA250, or it can be decompressed by means of an external UNZIP program after the bitstream has been saved.
R&S®CA250 offers a broad range of possibilities for custom modifications and extensions. One of those possibilities is the easy integration of user-defined algorithms for bit-stream analysis and manipulation. Another valuable feature is the Python script interface. Using the Python script language, the user can program automatic operating sequences to simplify recurrent sequences or to run complicated calculation sequences automatically.

Furthermore, many of the algorithms can be customized by adding or modifying .xml configuration files. This method can be applied to new alphabet decoders for any language, alphabet or character set. The payload analysis can also be extended by this method. It is easy to add the detection of new file formats, protocols or any other content type.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<UserDefinedAlphabet uda_version="1.0">
  <AlphabetName>FSK1 VARICODE</AlphabetName>
  <SymbolIValency>2</SymbolIValency>
  <ErrorHandling error_char="*">correction</ErrorHandling>
  <OutputDirection>LeftToRight</OutputDirection>
  <DynBlockLength>
    <AlphabetTables data_format="sequence" char_format="plain">
      <Separator data="C,0" length="2"/>
    </AlphabetTables>
    <SeparatorCharacters>
      <Separator data="C,0" length="2"/>
    </SeparatorCharacters>
    <Alphabet>
      <CharacterSet data="1,0,1,0,1,0,1,0,1,1" length="10" char="t\#000: "/>
      <CharacterSet data="1,0,1,0,1,0,1,0,1,1" length="10" char="t\#001: "/>
      <CharacterSet data="1,0,1,1,1,0,1,1,0,1" length="10" char="t\#002: "/>
      <CharacterSet data="1,0,1,1,1,0,1,1,1,1" length="10" char="t\#003: "/>
      <CharacterSet data="1,0,1,1,1,0,1,1,1,1" length="10" char="t\#004: "/>
      <CharacterSet data="1,1,0,1,0,1,1,1,1,1" length="10" char="t\#005: "/>
      <CharacterSet data="1,0,1,1,1,0,1,1,1,1" length="10" char="t\#006: "/>
      <CharacterSet data="1,0,1,1,1,0,1,1,1,1" length="10" char="t\#007: "/>
      <CharacterSet data="1,0,1,1,1,0,1,1,1,1" length="10" char="t\#008: "/>
      <CharacterSet data="1,1,1,0,1,1,1,1,1,1" length="10" char="t\#009: "/>
      <CharacterSet data="1,1,1,0,1,1,1,1,1,1" length="10" char="t\#010: "/>
      <CharacterSet data="1,1,0,1,1,0,1,1,1,1" length="10" char="t\#011: "/>
      <CharacterSet data="1,0,1,1,0,1,1,1,1,1" length="10" char="t\#012: "/>
      <CharacterSet data="1,1,1,1,1,1,1,1,1,1" length="10" char="t\#013: "/>
      <CharacterSet data="1,1,0,1,1,0,1,1,0,1" length="10" char="t\#014: "/>
      <CharacterSet data="1,1,1,0,1,1,0,1,0,1" length="10" char="t\#015: "/>
    </Alphabet>
  </DynBlockLength>
</UserDefinedAlphabet>
```
Ordering information

<table>
<thead>
<tr>
<th>Designation</th>
<th>Type</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitstream Analysis, including bitstream representation and bitstream manipulation</td>
<td>R&S®CA250</td>
<td>4076.5009.03</td>
</tr>
<tr>
<td>Licensing option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensing of R&S®CA250 with USB Dongle</td>
<td>R&S®CA250-U</td>
<td>4101.3039.02</td>
</tr>
<tr>
<td>Licensing of R&S®CA250 with SD Card Dongle</td>
<td>R&S®CA250-S</td>
<td>4101.3045.02</td>
</tr>
<tr>
<td>Licensing of R&S®CA250 with Mini USB Dongle</td>
<td>R&S®CA250-M</td>
<td>4101.3051.02</td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Bitstream Analysis and Decoding</td>
<td>R&S®CA250-E</td>
<td>4076.5180.02</td>
</tr>
<tr>
<td>Professional Bitstream Analysis and Decoding (requires R&S®CA250-E)</td>
<td>R&S®CA250-P</td>
<td>4076.5196.02</td>
</tr>
<tr>
<td>Code Analysis (requires R&S®CA250-P)</td>
<td>R&S®CA250-CA</td>
<td>4076.5221.02</td>
</tr>
<tr>
<td>Payload Analysis</td>
<td>R&S®CA250-PA</td>
<td>4076.5215.02</td>
</tr>
<tr>
<td>Development Edition</td>
<td>R&S®CA250-D</td>
<td>4076.5238.02</td>
</tr>
<tr>
<td>Additional options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade Package to version ≥ 04.00 (contact Rohde & Schwarz for more information)</td>
<td>R&S®CA250UP</td>
<td>4076.5244.02</td>
</tr>
</tbody>
</table>

1) Older R&S®CA250 releases with version < 04.00 have to be upgraded before all features described in this brochure can be used. To upgrade, the old USB licensing dongle has to be returned to Rohde&Schwarz and will be replaced with R&S®CA250-U, R&S®CA250-S or R&S®CA250-M.

Note:
Rohde & Schwarz licenses for R&S®CA250 are stored on a USB dongle, USB mini dongle or SD card. If the dongle or SD card is lost, stolen or misplaced, Rohde & Schwarz will not provide a replacement. All licenses stored on the missing device will have to be purchased again at full price. In the unlikely event that a USB dongle, USB mini dongle or SD card is corrupt or broken, it will be replaced by Rohde & Schwarz only if the defective device is returned to Rohde & Schwarz. A moderate fee will be charged for producing and sending the replacement.

All options require the R&S®CA250 base version.

For data sheet, see PD 5214.0618.22 and www.rohde-schwarz.com

Your local Rohde & Schwarz expert will help you determine the optimum solution for your requirements. To find your nearest Rohde & Schwarz representative, visit www.sales.rohde-schwarz.com

Rohde & Schwarz
R&S®CA250 Bitstream Analysis 11
About Rohde & Schwarz
Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established more than 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Environmental commitment
- Energy-efficient products
- Continuous improvement in environmental sustainability
- ISO 14001-certified environmental management system

Rohde & Schwarz GmbH & Co. KG
www.rohde-schwarz.com

Regional contact
- Europe, Africa, Middle East | +49 89 4129 12345
customersupport@rohde-schwarz.com
- North America | 1 888 TEST RSA (1 888 837 87 72)
customer.support@rsa.rohde-schwarz.com
- Latin America | +1 410 910 79 88
customersupport.la@rohde-schwarz.com
- Asia/Pacific | +65 65 13 04 88
customersupport.asia@rohde-schwarz.com
- China | +86 800 810 8228/+86 400 650 5896
customersupport.china@rohde-schwarz.com

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG
Trade names are trademarks of the owners
PD 5214.0618.12 | Version 05.01 | October 2013 (fi)
R&S®CA250
Data without tolerance limits is not binding | Subject to change
© 2008 - 2013 Rohde & Schwarz GmbH & Co. KG | 81671 München, Germany