5½-digit DMM with twin A/D converters offering two-channel synchronous measurement

- New measurement environment by twin A/D converters
- Double the throughput by Ach/Bch synchronous measurement
- Wide dynamic range of $51 / 2$ digits on both Ach and Bch
- Wider current measurement range and parallel measurement with voltage or temperature
Ach: 10pA to 2A Bch: 100 1 A to 10A
- A variety of interfaces

7352A: USB, GPIB, RS-232 7352E: USB

Evolution from Dual to TWIN TUIN

Open up a new age of digital multimeters by real two-channel synchronous measurement

A new concept digital multimeter 7352 series has appeared, offering various applications and improved throughput.
The 7352A/7352E is the next-generation digital multimeter having twin-A/D converters that enable fully-independent measurement of two-channel signals, and is suitable for high-speed measurement, parallel measurement of different functions and multi-channel measurement by configuring a system.
The channel A (Ach) has basic measurement functions for DC voltage/current, AC voltage/current, resistance and frequency, while the channel B (Bch) has DC voltage/current, AC current and temperature measurement
functions. Thus, higher throughput can be obtained with Ach/Bch synchronous measurement or Ach/Bch parallel measurement of different functions.
Furthermore, the dynamic range of current measurement has been broadened significantly, enabling measurement from low current of 10 pA to high current of 10A.
The 7352A is equipped with an RS-232 interface in addition to USB and GPIB interfaces for use in R\&D and production lines. The 7352E is equipped with a USB interface for low-cost system configuration.
The remote command language not only complies with the conventional ADC commands and SCPI, but also is compatible with that of the digital multimeter R6452A.

[^0]

Various Solutions to Meet Your Needs!

Synchronization

Improve the system throughput with minimum dispersion?
Twin A/D converters realize synchronous measurement of Ach and Bch functions.
Even at the sampling rate per PLC at which noise rejection is possible, two-function measurement data can be obtained without switching the functions, allowing the significant improvement of the system throughput.

Low current

Measure much lower current?

The broadened dynamic range enables measurement of low power consumption. Ach has measurement ranges from $2 \mu \mathrm{~A}$ (10pA resolution) to 2A, and Bch has 10A measurement range ($100 \mu \mathrm{~A}$ resolution). Two functions such as current/voltage or current/temperature can be measured with high sensitivity and resolution and these results are dual-displayed.

High acouracy

Measure Bch as well as Ach highly accurately?

Since Bch is fully independent from Ach, its measurement is not affected by the potential difference between them. In addition, high-accuracy Bch measurement is available with 5½-digit display.
Moreover, this series is capable of high-accuracy parallel measurement of different measurement functions such as voltage/current, voltage or current/temperature, or AC/DC between Ach and Bch.

System configuration

Build up a system easily?

In building up a system, system interfaces are available for easy connection with a programmable controller. The 7352A is equipped with USB, GPIB and RS-232 interfaces as standard.

Applications

Evaluation of DC/DC Converter

The input and output characteristics, load regulation characteristics, conversion efficiency, and rise in temperature of a $D C / D C$ converter can be evaluated by a single unit of the 7352A/7352E. This series has five measurement capabilities: input voltage/current on Ach, output voltage/current on Bch and temperature on rear TEMP. In addition, change in input current or temperature against load current fluctuation can be measured in real time by using two-channel parallel measurement.
Thanks to complete isolation between the channels, the input and output of an isolated DC/DC converter can be measured by just one unit. The channel outputs of a multi-output converter can be also monitored simultaneously by using one unit per two channels. Even in such case, there is no crosstalk between the channels.

Testing of Power Unit

The conventional dual DMM has the following problems in testing a power unit.

- Switching measurement is required because of a single A / D converter.
-It takes time to switch the AC-DC functions.
-When there is a potential difference between Ach LO and Bch LO, a large measurement error occurs on Bch.
Thus, in such measurement, two digital multimeters are required. On the other hand, the 7352A/7352E is provided with completely isolated Ach, Bch and TEMP, and is equipped with two independent A/D converters. Thus, switching measurement
and functional change are unnecessary, and high-throughput measurement is available without influence between the channels. It has six measurement capabilities: AC input voltage/current and frequency on Ach, DC output voltage/current on Bch, and temperature on rear TEMP.

Right and Left Display Combinations and Measurement Functions

		Measurement function	Measurement Range	Right side display																								
		OFF		Ach								Bch																
		DCV		$\begin{gathered} \mathrm{ACV} \\ \mathrm{ACV}(\mathrm{AC}+\mathrm{DC}) \end{gathered}$	$\begin{gathered} \Omega \\ \mathrm{LP}-\Omega \end{gathered}$	DCI	$\begin{gathered} \mathrm{ACl} \\ \mathrm{ACl}(\mathrm{AC}+\mathrm{DC}) \end{gathered}$	Continuity	Diode	FREQ	DCV	DCI	$\begin{gathered} \mathrm{ACl} \\ \mathrm{ACl}(\mathrm{AC}+\mathrm{DC}) \end{gathered}$	TEMP														
$\begin{aligned} & \frac{\text { त }}{0} \\ & \frac{010}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\vdots}{\omega} \end{aligned}$	Ach		DCV	1 $\mu \mathrm{V}$-1000V	Single measurement	Sequential measurement (Two functions are alternately measured by switching them.)								Synchronous measurement														
		$\begin{aligned} & \mathrm{ACV} \\ & \mathrm{ACV}(\mathrm{AC}+\mathrm{DC}) \end{aligned}$	True RMS $1 \mu \mathrm{~V}-700 \mathrm{~V}$																									
		$\begin{aligned} & \Omega \\ & \hline \mathrm{LP}-\Omega \end{aligned}$	$1 \mathrm{~m} \Omega-200 \mathrm{M} \Omega$																									
		DCI	10pA-2A																									
		$\begin{aligned} & \mathrm{ACl} \\ & \mathrm{ACl}(\mathrm{AC}+\mathrm{DC}) \end{aligned}$	Trure RMS 1nA-2A																									
		Continuity	-																									
		Diode	-																									
		FREQ	10Hz-300kHz																									
	Bch	DCV	$1 \mu \mathrm{~V}-200 \mathrm{~V}$	Single measurement	Synchronous measurement (Two functions are simultaneously measured.)								Sequential measurement															
		DCI	$100 \mu \mathrm{~A}-10 \mathrm{~A}$																									
		$\begin{array}{\|l\|} \hline \mathrm{ACl} \\ \mathrm{ACl}(\mathrm{AC}+\mathrm{DC}) \\ \hline \end{array}$	True RMS $100 \mu \mathrm{~A}-10 \mathrm{~A}$																									
		TEMP	K, T thermocouple																									

Measurement Time

The maximum sampling rate is 140 readings/sec for 1-channel single measurement and 123 readings/sec for 2-channel synchronous measurement. The sampling rate per PLC at which noise rejection is possible is 46 readings $/ \mathrm{sec}$ for single measurement and 40 readings/sec for synchronous measurement that are the highest rate in this class.

RATE mode	Integration time	Display digit	Single measurement			Synchronous measurement	
			DCV DCI $2 \mathrm{~W} \Omega$ $\mathrm{LP}-2 \mathrm{~W} \Omega$	ACV ACI continuity diode	$\begin{gathered} \mathrm{ACV}(\mathrm{AC}+\mathrm{DC}) \\ \mathrm{ACl}(\mathrm{AC}+\mathrm{DC}) \end{gathered}$	$\begin{gathered} \mathrm{DCV} \\ \mathrm{DCl} \\ 2 \mathrm{~W} \Omega \\ \mathrm{LP}-2 \mathrm{~W} \Omega \end{gathered}$	ACV ACI continuity diode
FAST	2 ms	19999	$140 \mathrm{rdgs} / \mathrm{s}$	(7.1ms)	$30 \mathrm{rdgs} / \mathrm{s}$ (33ms)	$123 \mathrm{rdgs} / \mathrm{s}$	(8.1ms)
MED (50 Hz)	1PLC	199999	$40 \mathrm{rdgs} / \mathrm{s}$	(25ms)	$19 \mathrm{rdgs} / \mathrm{s}$ (52 ms)	$38 \mathrm{rdgs} / \mathrm{s}$	(26.3ms)
MED (60Hz)	1PLC	199999	$46 \mathrm{rdgs} / \mathrm{s}$	(21.7ms)	$22 \mathrm{rdgs} / \mathrm{s}$ (45.4 ms)	$43.5 \mathrm{rdgs} / \mathrm{s}$	(23ms)
SLOW1	100 ms	199999	9.5 rdgs/s	(105ms)	$4.7 \mathrm{rdgs} / \mathrm{s}(212 \mathrm{~ms})$	$9.5 \mathrm{rdgs} / \mathrm{s}$	(105ms)
SLOW2	200 ms	199999	$4.9 \mathrm{rdgs} / \mathrm{s}$	(205ms)	2.4 rdgs/s (412ms)	$4.9 \mathrm{rdgs} / \mathrm{s}$	(205ms)

Conditions: Auto-range: OFF, Auto-zero: OFF, Calculation: OFF, Display: OFF

Specifications Unless otherwise specified, the measurement accuracy is guaranteed for one year under the following conditions: Temperature; $23 \pm 5^{\circ} \mathrm{C}$, relative humidity; 85% or less (75% or less in resistance measurement of $20 \mathrm{M} \Omega$ or more and low power resistance measurement of $2 \mathrm{M} \Omega$ or more). Temperature coefficient: For the $41 / 2$-digit display, the digit error is reduced to $1 / 10$.
Channel A (Ach)
■ DC Voltage Measurement (DCV-Ach)

Range	Maximum display		Resolution		Input impedance	Measurement accuracy ${ }^{1}$ \pm (\% of reading + digits)			Temperature coefficient \pm (ppm of reading + digits) ${ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
200 mV	199.99	199.999	$10 \mu \mathrm{~V}$	$1 \mu \mathrm{~V}$	More than 1G Ω	0.012+4	0.012+6	0.012+6	15+0.85	15+2
2000 mV	1999.9	1999.99	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	More than 1G Ω	0.011+2	0.011+2	$0.011+2$	15+0.2	15+1.5
20 V	19.999	19.9999	1 mV	$100 \mu \mathrm{~V}$	$10 \mathrm{M} \Omega \pm 1 \%$	0.015+2	0.015+4	0.015+4	20+0.25	20+1.5
200 V	199.99	199.999	10 mV	1 mV	$10 \mathrm{M} \Omega \pm 1 \%$	0.015+2	0.015+4	0.015+4	20+0.25	20+1.5
1000 V	1099.9	1099.99	100 mV	10 mV	$10 \mathrm{M} \Omega \pm 1 \%$	0.015+2	0.015+4	0.015+4	20+0.25	20+1.5

${ }^{* 1}$ For Auto-zero ON. For Auto-zero OFF, 1 digit is added to the digit error.

- Noise rejection ratio

		FAST	MED/SLOW1,2
Effective common mode noise rejection ratio	DC	Approx. 130dB	Approx. 130dB
$($ Unbalanced impedance of $1 \mathrm{k} \Omega$)	$50 / 60 \mathrm{~Hz} \pm 0.08 \%$	Approx. 60dB	Approx. 120dB
Normal mode noise rejection ratio	$50 / 60 \mathrm{~Hz} \pm 0.08 \%$	0 dB	Approx. 60dB

■ Maximum input

Between $\mathrm{V}_{\Omega} \mathrm{Hz}$ and COM A terminals	1000 Vpeak

■ AC Voltage Measurement (ACV, ACV (AC+DC)-Ach)

*2 For a sine-wave input. When RATE is set to FAST or MED, the digit error is reduced to $1 / 10$ of its specification.
ACV (AC+DC)

Range	Maximum display		Resolution		Input impedance	Measurement accuracy ${ }^{\text {2 }}$ $\pm(\%$ of reading + digits)				
	FAST/MED	SLOW1,2	FAST/MED	SLOW1,2		20-45Hz	45-100Hz	$100-20 \mathrm{kHz}$	20k-50kHz	$50 \mathrm{k}-100 \mathrm{kHz}$
200 mV	199.9	199.99	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$\begin{gathered} 1 \mathrm{M} \Omega \pm 2 \%, \\ 140 \mathrm{pF} \text { or less } \end{gathered}$	0.38+14	$0.11+14$	0.1+14	0.25+15	0.7+24
2000 mV	1999	1999.9	$1000 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$		0.38+14	$0.11+14$	$0.1+14$	0.2+15	0.6+24
20 V	19.99	19.999	10 mV	$1000 \mu \mathrm{~V}$		$0.38+14$	0.11+14	0.1+14	0.2+15	0.6+24
200 V	199.9	199.99	100 mV	10 mV		$0.38+14$	0.11+14	0.1+14	0.2+15	0.6+24
700 V	749	749.9	1000 mV	100 mV		$0.38+10$	$0.11+10$	$0.1+10$	-	-

*2 For a sine-wave input. When RATE is set to FAST or MED, the digit error is reduced to $1 / 10$ of its specification.
Additional crest factor error (For a non sine-wave input voltage) $\quad \pm(\%$ of reading $+\%$ of range)

$1-2$	$0+0.05$	
$2-3$	$0+0.15$	$\pm(\%$ of reading $)$
Additional error to the ACV (AC+DC) measurement		
	FAST	MED
$20-45 \mathrm{~Hz}$	1.24%	0.72%
$45-100 \mathrm{~Hz}$	0.06%	-

■ Resistance Measurement (2W Ω, LP-2W Ω-Ach)
$2 \mathrm{~W} \Omega$ measurement

Range	Maximum display		Resolution		Measurement current	Measurement accuracy ${ }^{\text {³ }}$ $\pm(\%$ of reading + digits)			Temperature coefficient $\pm\left(\right.$ ppm of reading+digits) $/{ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
200ת	199.99	199.999	$10 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$	1 mA	0.02+4	0.02+9	0.02+8	20+1	20+2
2000Ω	1999.9	1999.99	$100 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	1 mA	0.02+2	0.02+5	$0.014+3$	15+0.25	15+1.5
20k Ω	19.999	19.9999	1Ω	$100 \mathrm{~m} \Omega$	100 $\mu \mathrm{A}$	0.02+2	0.02+5	$0.014+3$	15+0.25	15+1.5
200k Ω	199.99	199.999	10Ω	1Ω	10رA	0.02+2	0.02+5	0.02+5	20+0.25	20+1.5
$2000 \mathrm{k} \Omega$	1999.9	1999.99	100Ω	10Ω	$1 \mu \mathrm{~A}$	0.03+2	0.03+10	0.03+10	35+2	35+5
$20 \mathrm{M} \Omega$	19.999	19.9999	$1 \mathrm{k} \Omega$	100Ω	100nA	0.2+2	$0.2+10$	0.2+10	155+2	155+5
200M Ω	199.99	199.999	$10 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	10nA	1.5+2	$1.5+10$	$1.5+10$	1500+2	1500+5
Low power measurement (LP-2W 2)										
Range	Maximum display		Resolution		Measurement current	Measurement accuracy ${ }^{\text {³ }}$ $\pm(\%$ of reading + digits)			Temperature coefficient \pm (ppm of reading+digits) $/{ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
200ת	199.99	199.999	$10 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$	1 mA	0.02+4	0.02+9	0.02+8	20+1	20+5
2000 2	1999.9	1999.99	$100 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	0.03+4	0.03+9	0.03+8	20+1	20+3
$20 \mathrm{k} \Omega$	19.999	19.9999	1Ω	$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	0.03+4	0.03+9	0.03+8	20+1	20+3
200k Ω	199.99	199.999	10Ω	1Ω	$1 \mu \mathrm{~A}$	0.03+4	0.03+9	0.03+8	30+1	30+3
$2000 \mathrm{k} \Omega$	1999.9	1999.99	100Ω	10Ω	100nA	0.2+2	$0.2+12$	0.2+12	150+2	150+5
$20 \mathrm{M} \Omega$	19.999	19.9999	$1 \mathrm{k} \Omega$	100Ω	10nA	1.5+5	1.5+50	1.5+50	1500+2	1500+5

[^1]| Response
 time | | | 20
 (Tim | 20

 (Tim |
| :---: | :--- | :---: | :---: | :---: |

Maximum input

\section*{| Between V $\Omega \mathrm{Hz}$ and COM A terminals | 1000Vpeak |
| :--- | :--- |}

■ DC Current Measurement (DCI-Ach)

Range	Maximum display		Resolution		Resistance between terminals (A fuse resistance is included.)	Measurement accuracy ${ }^{\text {4 }}$ $\pm(\%$ of reading + digits)			Temperature coefficient \pm (ppm of reading+digits) $/{ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
2000nA	1999.9	1999.99	100pA	10pA	$11.5 \mathrm{k} \Omega$ or less	0.15+35	$0.15+40$	0.15+40	150+4	150+4
$20 \mu \mathrm{~A}$	19.999	19.9999	1nA	100pA		0.1+7	0.1+7	0.1+5	100+1	100+1.6
$200 \mu \mathrm{~A}$	199.99	199.999	10nA	1nA	102Ω or less	0.04+20	$0.04+40$	0.04+40	40+4	40+5
$2000 \mu \mathrm{~A}$	1999.9	1999.99	100nA	10nA		0.04+2	$0.04+7$	0.04+5	40+1	40+1.6
20 mA	19.999	19.9999	$1 \mu \mathrm{~A}$	100nA	2Ω or less	0.04+20	$0.04+40$	0.04+40	40+4	40+5
200mA	199.99	199.999	10بA	$1 \mu \mathrm{~A}$		0.05+2	0.05+7	0.05+6	50+0.6	50+3
2000 mA	1999.9	1999.99	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	0.6Ω or less	0.15+2	$0.15+7$	$0.15+6$	150+0.6	150+3

${ }^{*} 4$ For Auto-zero ON. For Auto-zero OFF, 2 digits are added to the digit error.

Maximum input	Input protection	Fuse replacement
2 A	$2 \mathrm{~A} / 250 \mathrm{~V}$ fast-blow fuse which is compliant with IEC60127 sheet1	On the rear panel

■ AC Current Measurement (ACI, ACI (AC+DC)-Ach)

Measurement method: True RMS measurement, RMS display
Input range: $\quad 5 \%$ or more of a full scale
Crest Factor:
$3: 1$ at a full scale

Temperature coefficient: ($1 / 10$ of measurement accuracy that includes the additional error) $/{ }^{\circ} \mathrm{C}$ in each range and frequency range Approx. 1s (Time until the measurement value reaches within 0.1% of the final value in the same range)

ACl

Range	Maximum display		Resolution		Resistance between terminals (A fuse resistance is included.)	Measurement accuracy ${ }^{\circ}$ $\pm(\%$ of reading + digits)		
	FAST/MED	SLOW1,2	FAST/MED	SLOW1,2		20-45 Hz	$45-1 \mathrm{kHz}$	1k-5kHz
$200 \mu \mathrm{~A}$	199.99	199.999	10nA	1nA	102Ω or less	$0.4+200$	0.3+200	$0.3+100$
$2000 \mu \mathrm{~A}$	1999.9	1999.99	100nA	10nA		$0.5+200$	$0.35+100$	$0.35+200$
20 mA	19.999	19.9999	$1 \mu \mathrm{~A}$	100nA	2Ω or less	$0.4+200$	0.3+200	$0.3+100$
200 mA	199.99	199.999	10رA	$1 \mu \mathrm{~A}$		$0.4+200$	0.3+200	$0.3+100$
2000 mA	1999.9	1999.99	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	0.6Ω or less	$0.5+200$	$0.35+100$	$0.7+200$

*2 For sine-wave input. When RATE is set to FAST or MED, the digit error is reduced to $1 / 10$ of its specification.
$\mathrm{ACl}(\mathrm{AC}+\mathrm{DC})$

Range	Maximum display		Resolution		$\begin{aligned} & \text { Resistance between } \\ & \text { terminals } \\ & \text { (A fuse resistance is } \\ & \text { included.) } \end{aligned}$	Measurement accuracy ${ }^{\text {2 }}$ $\pm(\%$ of reading + digits)		
	FAST/MED	SLOW1,2	FAST/MED	SLOW1,2		20-45Hz	$45-1 \mathrm{kHz}$	1k-5kHz
$200 \mu \mathrm{~A}$	199.9	199.99	100nA	10nA	102Ω or less	0.4+20	0.3+20	$0.3+10$
$2000 \mu \mathrm{~A}$	1999	1999.9	$1 \mu \mathrm{~A}$	100nA		$0.5+20$	$0.35+10$	$0.35+20$
20 mA	19.99	19.999	$10 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	2Ω or less	0.4+20	0.3+20	$0.3+10$
200 mA	199.9	199.99	$100 \mu \mathrm{~A}$	10بA		0.4+20	$0.3+20$	0.3+10
2000 mA	1999	1999.9	1 mA	$100 \mu \mathrm{~A}$	0.6Ω or less	0.5+20	0.35+10	$0.7+20$

*2 For sine-wave input. When RATE is set to FAST or MED, the digit error is reduced to $1 / 10$ of its specification.
Additional crest factor error (For a non sine-wave) \pm (\% of reading + \% of range)

Range	Crest factor		Maximum input	Input protection	Fuse replacement
	1-2	2-3	2 A	$2 \mathrm{~A} / 250 \mathrm{~V}$ fast-blow fuse which is compliant with IEC60127 sheet 1	On the rear panel
$200 \mu \mathrm{~A}-20 \mathrm{~mA}$	0+0.05	0+0.15			
200mA, 2000mA	0+0.05	0.1+0.15			
Additional error to the $\mathrm{ACI}(\mathrm{AC}+\mathrm{DC})$ measurement					
	FAST	MED			
$20-45 \mathrm{~Hz}$	1.24\%	0.72\%			
$45-1 \mathrm{kHz}$	0.06\%	-			

■ Frequency Measurement (FREQ-Ach)
Measurement method: Reciprocal

Measurement frequency range	Measurement accuracy
10 Hz to 300 kHz	0.02% of reading

Sampling rate	Gate time	Measurement frequency range	Maximum measurement period	Maximum display
SLOW	1000 ms	1 Hz to 300 kHz	2.2 s	999999
MED	100 ms	10 Hz to 300 kHz	220 ms	99999
FAST	10 ms	100 Hz to 300 kHz	22 ms	9999

A frequency over the above range is displayed but not guaranteed.
Input signal condition: For sine-wave
Input signal voltage range: 100 mVrms to 700 Vrms and 10% of each voltage range or more (However, the input signal is restricted to the maximum input.)

Maximum input

Between V $\Omega \mathrm{Hz}$ and COM A terminals	$700 \mathrm{Vrms}, 1000 \mathrm{~V}$ peak, $2.2 \times 10^{7} \mathrm{~V} \mathrm{~Hz}$

■ Diode Measurement-Ach

Range	Maximum display		Resolution		Measurement current	Measurement accuracy ${ }^{\text {. }}$ $\pm(\%$ of reading + digits)			Temperature coefficient $\pm\left(\right.$ ppm of reading+digits)/ $/{ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
2000 mV	1999.9	1999.99	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	1 mA	0.014+2	0.014+5	0.014+3	15+0.25	15+1.5

[^2]Other specifications are the same as the resistance measurement function.

■ Continuity Measurement-Ach

Range	Maximum display		Resolution		Measurement current	Measurement accuracy * ${ }^{*}$ $\pm(\%$ of reading + digits)			Temperature coefficient $\pm\left(\mathrm{ppm}\right.$ of reading+digits)/ ${ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
2000Ω	1999.9	1999.99	$100 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	1 mA	0.014+2	0.014+5	0.014+3	15+0.25	15+1.5

*4 For Auto-zero ON. For Auto-zero OFF, 2 digits are added to the digit error
Continuity judgment value: 1Ω to 1000Ω
Other specifications are the same as the resistance measurement function.

Channel B (Bch)

■ DC Voltage Measurement (DCV-Bch)

Range	Maximum display		Resolution		Input impedance	Measurement accuracy ${ }^{1}$$\pm(\% \text { of reading + digits) }$			Temperature coefficient $\pm\left(\mathrm{ppm}\right.$ of reading+digits) $/{ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
200 mV	199.99	199.999	$10 \mu \mathrm{~V}$	$1 \mu \mathrm{~V}$	More than 1G Ω	0.012+4	0.012+7	0.012+6	15+0.85	15+2
2000 mV	1999.9	1999.99	$100 \mu \mathrm{~V}$	10رV	More than 1G Ω	0.011+2	0.011+5	0.011+2	15+0.2	15+1.5
20 V	19.999	19.9999	1 mV	$100 \mu \mathrm{~V}$	$10 \mathrm{M} \Omega \pm 1 \%$	0.015+2	0.015+5	0.015+5	20+0.25	20+1.5
200 V	199.99	199.999	10 mV	1 mV	$10 \mathrm{M} \Omega \pm 1 \%$	0.015+2	0.015+5	0.015+5	20+0.25	20+1.5

${ }^{*} 1$ For Auto-zero ON. For Auto-zero OFF, 1 digit is added to the digit error.

Noise rejection ratio
FAST MED/SLOW1,2 Effective common mode noise rejection ratio (Unbalanced impedance of $1 \mathrm{k} \Omega$)
(Un)
Dormal mode noise rejection ratio
Normz

Maximum input

Between V and COM B terminals	200Vpeak

■ DC Current Measurement (DCI-Bch)

Range	Maximum display		Resolution		Resistance between terminals (A fuse resistance is included.)	Measurement accuracy ${ }^{\text {.4 }}$ $\pm(\%$ of reading + digits)			Temperature coefficient $\pm\left(\mathrm{ppm}\right.$ of reading+digits) $/{ }^{\circ} \mathrm{C}$	
	FAST	MED/SLOW1,2	FAST	MED/SLOW1,2		FAST	MED	SLOW1,2	Auto-zero ON	Auto-zero OFF
10A	11.999	11.9999	1 mA	$100 \mu \mathrm{~A}$	0.03Ω or less	0.2+2	0.2+7	0.2+5	200+0.6	200+3

*4 For Auto-zero ON. For Auto-zero OFF, 2 digits are added to the digit error.

Maximum input	Input protection	Fuse replacement
10 A	$15 \mathrm{~A} / 250 \mathrm{~V}$ fast-blow fuse with	Contact ADC
	10000A breaking capacity	Corporation to repair

■ AC Current Measurement (ACI, ACI (AC+DC)-Bch)

Measurement method: True RMS measurement, RMS display
Input range:
5% or more of a full scale
Crest Factor: $\quad 3: 1$ at a full scale
Temperature coefficient: ($1 / 10$ of measurement accuracy that includes the additional error) $/{ }^{\circ} \mathrm{C}$ in each range and frequency range
Response time: Approx. 1s (Time until the measurement value reaches within 0.1% of the final value in the same range)
ACI

Range	Maximum display		Resolution		Resistance between terminals (A fuse resistance is included.)	Measurement accuracy ${ }^{2}$ \pm (\% of reading + digits)		
	FAST/MED	SLOW1,2	FAST/MED	SLOW1,2		$20-45 \mathrm{~Hz}$	$45-1 \mathrm{kHz}$	1k-5kHz
10A	11.999	11.9999	1 mA	$100 \mu \mathrm{~A}$	0.03Ω or less	0.5+200	0.5+200	0.7+200

*2 For sine-wave input. When RATE is set to FAST or MED, the digit error is reduced to $1 / 10$ of its specification.
$\mathrm{ACl}(\mathrm{AC}+\mathrm{DC})$

Range	Maximum display		Resolution		Resistance between terminals (A fuse resistance is included.)	Measurement accuracy ${ }^{2}$ $\pm(\%$ of reading + digits)		
	FAST/MED	SLOW1,2	FAST/MED	SLOW1,2		$20-45 \mathrm{~Hz}$	$45-1 \mathrm{kHz}$	1k-5kHz
10A	11.99	11.999	10 mA	1 mA	0.03Ω or less	0.5+20	0.5+20	0.7+20

*2 For sine-wave input. When RATE is set to FAST or MED, the digit error is reduced to $1 / 10$ of its specification.
Additional crest factor error (For a non sine-wave) $\quad \pm(\%$ of reading + \% of range)

Range	Crest factor	
	$1-2$	$2-3$
10 A	$0+0.05$	$0.07+0.15$

Maximum input	Input protection	Fuse replacement
10 A	15A/250V fast-blow fuse with	Contact ADC
	10000A breaking capacity	Corporation to repair

Additional error to the $\mathrm{ACI}(\mathrm{AC}+\mathrm{DC})$ measurement		$\pm(\%$ of reading $)$
	FAST	MED
$20-45 \mathrm{~Hz}$	1.24%	0.72%
$45-1 \mathrm{kHz}$	0.06%	-

■ Temperature Measurement (TEMP-Bch)

		Thermocouple	
		$\mathrm{K}(\mathrm{CA})$	$\mathrm{T}(\mathrm{CC})$
Input terminal	Range	$-50^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$
TEMP HI - LO	Maximum display	1370.0	400.0
	Resolution	$0.1^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$
	Measurement accuracy	$\pm 0.15 \% \pm 3^{\circ} \mathrm{C}$	$\pm 0.15 \% \pm 3^{\circ} \mathrm{C}$

Maximum input

Between TEMP (HI) and TEMP (LO) terminals	36Vpeak

Compliant thermocouple standard: JIS C1602
Cold junction compensation: Internal

\quad Maximum Input	
Between COM A and COM B terminals	200 V
Between TEMP (HI/LO) and COM A terminals	200 Vpeak
Between TEMP (HI/LO) and COM B terminals	200 Vpeak
Between COM terminal and the chassis	500 V
Between TEMP (HI/LO) and the chassis	500 V

Calculation Functions

NULL calculation:
Display value (NULL) = Measurement value - NULL constant
Smoothing calculation:
Display value (SM) = Moving average over a specified number of measurements
Comparator calculation:
Display (HIGH) \leftarrow HIGH setting value $<$ Measurement value
Display (LOW) \leftarrow Measurement value $<$ LOW setting value
Display $(\mathrm{GO}) \leftarrow$ LOW setting value \leq Measurement value \leq HIGH setting value
Scaling calculation:
Display $(S C L)=($ Measurement value $-B) / A \times C$
A, B and C are constants. (Setting value)
MAX and MIN calculation:
Display value $(M A X)=$ Maximum measurement value after the calculation starts
Display value (MIN) = Minimum measurement value after the calculation starts
Display value (AVE) = Arithmetic mean after the calculation starts (Remote output only)
dB and dBm calculation:
db display $=20 \log$ (Measurement value / D)
dBm display $=10 \log \left[\left((\text { Measurement value })^{2} / \mathrm{D}\right) / 10^{-3}\right]$
D is constant. (Setting value)

Statistical calculation:
Number of samples
Display value (SAMPLE) = Number of measurement values in the specified range of the measurement memory
Maximum value
Display value $($ MAX $)=$ Maximum measurement value in the specified range of the measurement memory
Minimum value
Display value $($ MIN $)=$ Minimum measurement value in the specified range of the measurement memory
Average value
Display value (AVE) $=$ Average value in the specified range of the measurement memory
Standard deviation
Display value (SIGMA) = Standard deviation in the specified range of the measurement memory
Dispersion
Display value $(\mathrm{P}-\mathrm{P})=(($ Maximum measurement value $)-$ (Minimum measurement value)) in the specified range of the measurement memory
Calculation between 2 measurements:
Display value (M1+M2) = Left side display: M1 + Right side display: M2
Display value (M1-M2) = Left side display: M1 - Right side display: M2
Display value $\left(\mathrm{M}^{*} \mathrm{M} 2\right)=$ Left side display: $\mathrm{M} 1 \times$ Right side display: M2
Display value (M1/M2) = Left side display: M1 / Right side display: M2

Interface Specifications

- Remote control

Remote command:
Compliance with the command format for ADC, SCPI and R6452A.

- Interface (GPIB or USB)

USB
Standard: Compliance with Full speed USB2.0
Connector:
Type B
GPIB (7352A)
Standard:
Connector:
Interface function:
Output format:
Addressing:

EIA232 (7352A)
Standard:
Connector:
Baud rate:
Parity:
Number of data bits:
Number of stop bits:
echo:
Compliance with IEE488.2-1987
24-pin Amphenol
SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0, E2 ASCII
31 kinds of talker/listener addresses can be specified from the front panel.

Compliance with EIA232 (RS-232)
D-Sub9 pin
9600, 4800, 2400, 1200, 600, 300
Even number (EVEN), odd number (ODD), or none
7 bits or 8 bits
1 bit or 2 bits
ON, OFF

External trigger signal (7352A)	
Connector:	BNC
Signal level:	TTL, detecting the failing edge
Pulse width:	1μ s or more

General Specifications

Operating environment: Ambient temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
However, 0 to $+45^{\circ} \mathrm{C}$ in cases where 1 A or more and 5 A or more are simultaneously applied to Ach and Bch respectively for the current measurement.
Relative humidity: 85% or less, no condensation
Storage environment: Ambient temperature: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Warm-up time: $\quad 60$ minutes or more
Display:
Range switching:
Input method:
Dual 6-digit and 7-segment vacuum fluorescent display Automatic and manual
Floating
Measurement method: Integration
Overload display: OL
Power supply: \quad AC power supply: $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}$
(Cab be switched by user)

Option Number	Standard	OPT.32	OPT.42	OPT.44
Power supply voltage	100 V	120 V	220 V	240 V

Specify the option when ordering.
Use a power cable and a fuse that are compliant with the safety standard when changing the power supply voltage.

Power supply frequency: $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Power consumption: 22VA or below
Dimensions: Approx. 212 (W) $\times 88$ (H) $\times 340$ (D) mm
Mass: $\quad 3.7 \mathrm{~kg}$ or less
Safety: IEC61010-1, EN61010-1
Measurement category II
EN61326 class A

Supplied Accessories

Name	Model	Quantity
Power cable	A01402	1
Input cable (red, black)	CC010001	1 each
Power fuse (for 100V/120V)	DFT-AAR315A-1	$1^{\circ} 6$
Power fuse (for 220V/240V)	DFT-AAR25A-1	
Overcurrent protection fuse	DFS-AN2A-1	1
Operation manual	E7352A/E	1

*6: Either one is included according to the specified option.

Optional Accessories

Name	Model	Remarks
Input cable	CC010001	Standard accessory
	A01001	Shielded cable 33VAC and 70VDC or less
	CC015001	33VAC and 70VDC or less
RS-232 cable	A01265	
Terminal adapter	1111	
JIS rack-mount set	A02263	
	A02264	Twins
	A02463	
	A02464	Twins
Panel-mount set	A02039	
	A02040	Twins
Sheath type thermocouple	$1101-100$	T (CC) type
	$1101-130$	K (CA) type

- Please read through the operation manual carefully before using the products.
- All specifications are subject to change without notice.

ADCMT.

ADC CORPORATION

E-mail : kcc@adcmt.com URL: http://www.adcmt-e.com

Head Office

Shoei Bldg, 3-6-12, Kyobashi, Chuou-ku,
Tokyo 104-0031, Japan
Phone: +81-3-6272-4433 Fax: +81-3-6272-4437
Higashimatsuyama Office (R\&D Center)
77-1, Miyako Namegawa-machi, Hiki-gun,
Saitama 355-0812, Japan
Phone: +81-493-56-4433 Fax: +81-493-56-4281

[^0]: - Measures Ach and Bch alternately with a single A/D converter.
 - The impedance between Ach and Bch is only $5 \mathrm{M} \Omega$ because Bch is a differential input circuit. The potential difference between the channels due to a differential resistance error causes a large error in Bch measurement. (0.05%)

[^1]: ${ }^{*} 3$ For Auto-zero ON . For Auto-zero OFF, 2 digits are added to the digit error. In addition, the offset error, which consists of the input cable resistance and 0.2Ω, is added.

[^2]: *5 For Auto-zero ON. For Auto-zero OFF, 2 digits are added to the digit error. In addition, an offset error, which is obtained by multiplying (the resistance of the input cable $+0.3 \Omega$) by 1 mA , is added.

