Correlated Receiver Diversity Simulations with R&S®SFU
Application Note

Products:

R&S®SFU	R&S®SFC
R&S®SFE	R&S®SFE100
R&S®SFC	R&S®SMU200A

Receiver diversity improves reception quality by using multiple antennas with a preferably low correlation factor between each other. This results in a more robust handling of multipath signals, since a deep fade will then not affect all received signals at the same time.

However, the compact dimensions of handheld devices can introduce unwanted correlation due to their dense antenna spacing. In this case, the popular diversity test setup consisting of several independent transmitters will no longer serve the needs of a realistic simulation, since correlation effects have to be taken into account here.

A clever solution is to operate the R&S®SFU in split-fading mode in combination with a second transmitter. This can be another R&S®SFU, the R&S®SFE, the R&S®SFE100, the R&S®SFC or the R&S®SMU200A.

In this way, two diversity signals of adjustable correlation for any common broadcast standard are coded in realtime, while their individual multipath profile is precisely specified by the extensive features of the R&S®SFU fader module.
Table of Contents

1 Overview ... 3

2 Test Setup .. 4

3 Device Configuration... 6
 3.1 R&S®SFU Configuration.. 6
 3.1.1 Activating the Split-Fading Mode.................................. 6
 3.1.2 Configuring the Digital I/Q Output................................. 7
 3.1.3 Specifying Signal Routing .. 8
 3.1.4 Configuring the Fading Profiles................................. 9
 3.2 Configuration of the Second Transmitter......................... 10
 3.2.1 Activating the Reference Frequency Coupling.............. 10
 3.2.2 Setting the Modulation Mode to Digital In.................. 11
 3.2.3 Configuring the Digital In Interface.......................... 12
 3.2.4 Level Optimization... 13
 3.3 Delay Fine Tuning... 14

4 Additional Information.. 14

5 Ordering Information.. 15
1 Overview

Receiver diversity improves reception quality by using multiple antennas with a preferably low correlation factor between each other. This results in a more robust handling of multipath signals, since a deep fade will then not affect all received signals at the same time.

However, the compact dimensions of handheld devices can introduce unwanted correlation due to their dense antenna spacing. In this case, the popular diversity test setup consisting of several independent transmitters will no longer serve the needs of a realistic simulation, since correlation effects have to be taken into account here.

A clever solution is to operate the R&S®SFU in split-fading mode in combination with a second transmitter. This can be another R&S®SFU, the R&S®SFE, the R&S®SFE100, the R&S®SFC or the R&S®SMU200A.

In this way, two diversity signals of adjustable correlation for any common broadcast standard are coded in realtime, while their individual multipath profile is precisely specified by the extensive features of the R&S®SFU fader module. This module is described in detail in the R&S®SFU manual.

This Application Note is structured as follows: First, Section 2 presents the test setup and its device and option requirements. Next, Section 3 explains the configuration of the R&S®SFU and the second transmitter step by step. Finally, Section 5 contains the ordering information.
2 Test Setup

The setup consists of the R&S®SFU and a second transmitter. The R&S®SFE100 is used here as an example, but all referenced interfaces and connections are also valid for the R&S®SFC, the R&S®SFE, the R&S®SMU200 or another R&S®SFU.

The two instruments are cabled with each other in the following way:

- The Digital I/Q output of the R&S®SFU is connected to the Digital I/Q input of the second transmitter via the R&S®LVDS BU-BU cable shown in Fig. 2.
- The Ref Freq output of the R&S®SFU is connected to the 10 MHz Ref input of the second transmitter.

Fig. 1: Test setup for diversity simulations with adjustable correlation

Fig. 2: R&S®LVDS BU-BU cable for connecting the Digital I/Q interfaces
This test setup results in device and option requirements listed below:

- **Test transmitter 1:**
 R&S® SFU with options
 - R&S® SFU-B30 (fading simulator)
 - R&S® SFU-B31 (fading simulator extension)
 - R&S® SFU-K80 (extended I/Q)

 Additionally, the arbitrary waveform generator (R&S® SFU-K35) or a combination of transport stream generator (R&S® SFU-K20) and realtime coder is recommended for baseband signal creation.

 Note: The interferer management function (R&S® SFU-K37) cannot be used during split-fading mode.

- **Test transmitter 2:**
 R&S® SFE, R&S® SFE100 (model 02), R&S® SFC, R&S® SMU200 or R&S® SFU with
 - Option K80 (extended I/Q)

 Additionally, basic options such as the realtime coder or the arbitrary waveform generator will be required.

- **R&S® LVDS BU-BU Digital I/Q connection cable**

 Further information is provided in Section 5 "Ordering Information".
3 Device Configuration

This section describes step by step, how the two instruments introduced in the test setup have to be configured. Concerning the screenshots, the R&S®SFE100 is assumed to be the second transmitter, but the settings for the R&S®SFE, R&S®SFC, R&S®SMU200 or another R&S®SFU are made in the same way.

3.1 R&S® SFU Configuration

The following description concentrates on the special settings necessary for the diversity test setup. Basic settings such as signal source, modulation type, frequency and RF level are expected to be already configured.

3.1.1 Activating the Split-Fading Mode

![FADING menu screenshot](image)

Fig. 3: Set MAX PATHS to “OFF” to enable the split-fading mode

a. From the FADING menu, select the FADING submenu.

b. On the right, set MAX PATHS to “OFF” as highlighted in the red box.
3.1.2 Configuring the Digital I/Q Output

Fig. 4: Set I/Q DIGITAL OUTPUT to "AFTER FADING (B)"

a. From the MODULATION menu, select the SETTINGS submenu.

b. On the right, set I/Q DIGITAL OUTPUT to "AFTER FADING (B)".
3.1.3 Specifying Signal Routing

This setting is required to route the fader outputs correctly and to account for the different signal processing times in the two transmitters.

![Device Configuration](image)

Fig. 5: Set SIGNAL (A) DEDICATED TO "RF OUTPUT" and SIGNAL (B) DEDICATED TO according to the type of the second transmitter

- a. From the FADING menu, select the SETTINGS submenu.

- b. On the right, set SIGNAL (A) DEDICATED TO to "RF OUTPUT". Select SIGNAL (B) DEDICATED TO depending on the type of the second transmitter being used. The setting "2ND RF SFE" also holds true for the R&S®SFE100 and R&S®SFC, as all three models handle their digital input in the same way.

- c. Ensure VIRTUAL RF (A) and VIRTUAL RF (B) match the selected transmit frequency.
3.1.4 Configuring the Fading Profiles

Fig. 6: Configure the fading profiles accordingly

a. From the FADING menu, select the FADING submenu. This results in two fading profile tables (A&B) being shown on the right, one above the other, according to the two diversity signals.

b. Start by configuring the top table (Fader A), which corresponds to this R&S®SFU transmitter because of the signal routing set in Section 3.1.3. Define PATH LOSS, DELAY and other parameters as desired. Further information about the particular fading settings is provided in the R&S®SFU manual.

c. For all correlated paths, switch CORRELATION PATH to “ON”. This will copy their parameters to Fader B. Furthermore, those parameters being changed later will then automatically be updated in the other fader as well. To control the amount of correlation of these paths, use the COEFFICIENT settings to define the ratio of matching samples and PHASE to determine the static phase shift between both signal paths.

d. Next, add additional non-correlated paths to Fading Profile B, if necessary.

e. Switch both Fader A and Fader B to “ON”.

- FADING Settings
 - FADING (A)
 - FADING (B)

- Profile
 - Config.
 - Standard delay

- Parameters
 - Bandwidth
 - Reference
 - Level
 - Standard
 - Mode
 - Configuration

- Profile Tables
 - A & B

- MODULATION
 - LEVEL
 - FADING
 - SETTINGS

- SIGNAL INFO/STAT.
 - DIGITAL TV
 - IMPAIRMENTS
 - NOISE

- Error Details
 - RF
 - MOD
 - NOISE
 - FADING (A)
 - FADING (B)
 - SET TO DEFAULT

- Parameters
 - State
 - Profile
 - Path Loss [db]
 - Gain [db]
 - Fading Delay [usec]
 - Power Ratio [%]
 - Correlation Path
 - Coefficient [db]
 - Phase [deg]
 - Impairments
 - Local Const [db]
 - Standard Dev [db]
3.2 Configuration of the Second Transmitter

The following description concentrates on the special settings necessary for the diversity test setup. Basic settings such as RF level and frequency are expected to be already configured. The RF frequency should, however, match that of the first transmitter.

Concerning the screenshots, the R&S®SFE100 is assumed to be the second transmitter, but the settings for the R&S®SFE, R&S®SFC, R&S®SMU200 or another R&S®SFU are made accordingly.

3.2.1 Activating the Reference Frequency Coupling

![Screenshot of SFE100 setup menu]

Fig. 7: Set REFERENCE SOURCE to "EXT"

a. From the SETUP menu, select the REFERENCE submenu located beneath HARDWARE SETTINGS.

b. On the right, set SOURCE to "EXT".
3.2.2 Setting the Modulation Mode to Digital In

![Device Configuration Interface]

Fig. 8: Set SIGNAL SOURCE to "DIGITAL IN"

a. From the MODULATION menu, select the MODULATION submenu.

b. On the right, set SIGNAL SOURCE to "DIGITAL IN".
3.2.3 Configuring the Digital In Interface

Fig. 9: Set DIGITAL IN MODE to "DIVERSITY/NATIVE"

a. From the MODULATION menu, select the SETTINGS submenu.

b. On the right, set DIGITAL IN MODE to "DIVERSITY/NATIVE".
3.2.4 Level Optimization

A change in fading profiles can affect the baseband and RF level of the second transmitter. That is why the use of the Digital I/Q Input Refresh function is recommended afterwards to ensure internal RF level optimization.

![Digital I/Q Input Refresh function](image)

Fig. 10: The Digital I/Q Input Refresh function

1. From the MODULATION menu, select the SIGNAL INFO/STAT. submenu.
2. On the right, click REFRESH.
3.3 Delay Fine Tuning

Even though the different processing times within the two transmitters are already accounted for by the settings presented in Section 3.1.3, it may happen that one instrument is some I/Q samples ahead of the other one.

This static shift can, however, be compensated with the aid of a dual channel oscilloscope connected to both RF outputs. This oscilloscope is required to determine the actual delay between the two transmitter signals. To account for the measurement instrument's possible bandwidth limitation, lower the RF frequency on the two transmitters temporarily to 10 MHz. Make sure that only one static path is active in both faders, so that identical signals are processed in the two different modulators. With those RF waveforms on the screen, the temporal offset can then be gradually decreased by changing the SIGNAL (B) DELAY SHIFT setting in the R&S® SFU menu shown in Fig. 5. Each step equals one sample duration and therefore comprises 10 ns.

Optimum screen resolution is gained by choosing an R&S® SFU baseband signal of high temporal activity. If the R&S® SFU is equipped with the arbitrary waveform generator (R&S® SFU-K35), a special file is available for this purpose:

D:\ARB\WAVEFORMS\diversity\dirac.wv

Based on this signal, Fig. 11 illustrates how an initial temporal transmitter offset of over 40 ns is compensated in this way.

![Before and After Delay Fine Tuning](image)

Fig. 11: Benefit of delay fine tuning

4 Additional Information

Our Application Notes are regularly revised and updated. Check for any changes at http://www.rohde-schwarz.com. Please send any comments or suggestions about this Application Note to Broadcasting-TM-Applications@rohde-schwarz.com.
5 Ordering Information

<table>
<thead>
<tr>
<th>Designation</th>
<th>Type</th>
<th>Order-No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&S® SFU Broadcast Test System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast Test System</td>
<td>R&S®SFU</td>
<td>2100.2500.02</td>
</tr>
<tr>
<td>DVB-TH Coder (*)</td>
<td>R&S®SFU-K1</td>
<td>2100.7301.02</td>
</tr>
<tr>
<td>Extended I/Q</td>
<td>R&S®SFU-K80</td>
<td>2100.7953.02</td>
</tr>
<tr>
<td>Fading Simulator</td>
<td>R&S®SFU-B30</td>
<td>2100.7530.02</td>
</tr>
<tr>
<td>Fading Simulator Extension to 40 Paths</td>
<td>R&S®SFU-B31</td>
<td>2100.7547.02</td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS Generator including SDTV streams</td>
<td>R&S®SFU-K20</td>
<td>2110.7476.02</td>
</tr>
<tr>
<td>ARB Generator</td>
<td>R&S®SFU-K35</td>
<td>2110.7601.02</td>
</tr>
<tr>
<td>R&S® SFE Broadcast Tester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast Tester</td>
<td>R&S®SFE</td>
<td>2112.4300.02</td>
</tr>
<tr>
<td>DVB-TH Coder (**)</td>
<td>R&S®SFE-K1</td>
<td>2113.4010.02</td>
</tr>
<tr>
<td>Extended I/Q Input</td>
<td>R&S®SFE-K80</td>
<td>2113.5251.02</td>
</tr>
<tr>
<td>R&S® SFE100 Test Transmitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Transmitter</td>
<td>R&S®SFE</td>
<td>2112.4100.02</td>
</tr>
<tr>
<td>DVB-TH Coder (**)</td>
<td>R&S®SFE100-K1</td>
<td>2113.4003.02</td>
</tr>
<tr>
<td>Extended I/Q Input</td>
<td>R&S®SFE100-K80</td>
<td>2113.5245.02</td>
</tr>
<tr>
<td>R&S® SFC Compact Modulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Modulator</td>
<td>R&S®SFC</td>
<td>2115.3510.02</td>
</tr>
<tr>
<td>DVB-TH Coder (**)</td>
<td>R&S®SFC-K1</td>
<td>2115.5271.02</td>
</tr>
<tr>
<td>Extended I/Q Input</td>
<td>R&S®SFC-K80</td>
<td>2115.5771.02</td>
</tr>
<tr>
<td>R&S® SMU200A Vector Signal Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector Signal Generator (***</td>
<td>R&S®SMU200A</td>
<td>1141.4100.02</td>
</tr>
<tr>
<td>Digital I/Q connection cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS Cable for digital I/Q input/output (2 m)</td>
<td>R&S®LVDS BU-BU</td>
<td>1130.1302.00</td>
</tr>
</tbody>
</table>

* Depending on the desired digital TV standard, a corresponding coder can be configured accordingly.

** Any coder (or ARB) can be selected for this application.

*** Refer to datasheet for detailed configurations
About Rohde & Schwarz
Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Environmental commitment
- Energy-efficient products
- Continuous improvement in environmental sustainability
- ISO 14001-certified environmental management system

Regional contact
USA & Canada
USA: 1-888-TEST-RSA (1-888-837-8772)
from outside USA: +1 410 910 7800
CustomerSupport@rohde-schwarz.com

East Asia
+65 65 13 04 88
CustomerSupport@rohde-schwarz.com

Rest of the World
+49 89 4129 137 74
CustomerSupport@rohde-schwarz.com

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners.