Signals produced by

CCVS + Component Generator
SAF

and

CCVS Generator
SFF

Standard M/NTSC and M/PAL

Signals which have a valid component structure but do not comply with composite format in M/NTSC and M/PAL are not generated by the SFF. These signals are marked with a " * ".

gr - 09.07.01
Subject to change
Contents

1. Signal Group ITS (Insertion Test Signal) ... 3
2. Signal Group APL (Average Picture Level) 12
3. Signal Group SPECIAL ... 14
4. Signal Group SWEEP + BURST... 24
5. Signal Group PULSE + BAR .. 28
6. Signal Group LINEARITY .. 32
7. Signal Group MONITOR ADJUSTMENT .. 39
8. Signal Group ZONE PLATE .. 48
9. Signal Group CCIR 601 ... 50

Annex 1: ITU-R BT. 801 ... 51
Annex 2: Pathological Signals .. 66
Annex 3: Zone Plate Signals .. 68
1. Signal Group ITS (Insertion Test Signal)

1.1 List of Signal

<table>
<thead>
<tr>
<th>ITS</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NTC7 COMPOSITE SIGNAL</td>
</tr>
<tr>
<td>2</td>
<td>NTC7 COMBINED SIGNAL</td>
</tr>
<tr>
<td>3</td>
<td>FCC COMBINED SIGNAL</td>
</tr>
<tr>
<td>4</td>
<td>VIR SIGNAL</td>
</tr>
<tr>
<td>5</td>
<td>MULTIBURST</td>
</tr>
<tr>
<td>6</td>
<td>MOD. PEDESTAL</td>
</tr>
<tr>
<td>7</td>
<td>12.5T 2T BAR</td>
</tr>
<tr>
<td>8</td>
<td>H SWEEP 1</td>
</tr>
<tr>
<td>9</td>
<td>H SWEEP 2</td>
</tr>
<tr>
<td>10</td>
<td>H SWEEP 3</td>
</tr>
<tr>
<td>11</td>
<td>H SWEEP 4</td>
</tr>
<tr>
<td>12</td>
<td>2T PULSE</td>
</tr>
<tr>
<td>13</td>
<td>SIN X/X</td>
</tr>
<tr>
<td>14</td>
<td>MULTIPULSE</td>
</tr>
<tr>
<td>15</td>
<td>RAMP</td>
</tr>
<tr>
<td>16</td>
<td>RAMP MOD. 40 IRE</td>
</tr>
<tr>
<td>17</td>
<td>15 KHz</td>
</tr>
<tr>
<td>18</td>
<td>250 KHz</td>
</tr>
<tr>
<td>19</td>
<td>COLOUR BARS 77/7.5/77/7.5</td>
</tr>
<tr>
<td>20</td>
<td>RED FIELD</td>
</tr>
<tr>
<td>21</td>
<td>BLACKBURST</td>
</tr>
<tr>
<td>22</td>
<td>BLACK</td>
</tr>
<tr>
<td>23</td>
<td>WHITE 100 IRE</td>
</tr>
<tr>
<td>24</td>
<td>TELETEXT TESTLINE 1</td>
</tr>
<tr>
<td>25</td>
<td>TELETEXT TESTLINE 2</td>
</tr>
</tbody>
</table>

1.2 Signal Description

ITS 1

NTC7 COMPOSITE SIGNAL

CCVS

Description:
The luminance bar is followed by a 2T pulse (HAD 250 ns) and a modulated 12.5T pulse (HAD 1.56 \(\mu\)s) all with amplitudes of 100 IRE. The 5 steps reach an amplitude of 90 IRE. The superposed subcarrier has \(U_{pp} = 40\) IRE at \(\varphi = 180^\circ\).

Applications:
This signal combination is mainly used as test line for automatic measurement and monitoring of TV signals. The luminance bar also serves as amplitude reference for automatic level control. The following distortions can be measured using the NTC7 COMP. signal:

- **Luminance bar:**
 - Cl level errors, line time waveform distortion, overshoot and rounding
 - 2T pulse:
 - amplitude errors, group delay indicator and reflection
 - 12.5T pulse:
 - amplitude, intermodulation and delay differences
 - Between luminance and chrominance
 - Modulated staircase:
 - Differential gain and phase, line time nonlinearity
ITS 2
NTC7 COMBINED SIGNAL

Description:
This signal consists of a 100 IRE luminance bar, a multiburst with \(U_{pp} = 50 \) IRE and a modulated pedestal superimposed on a 50 IRE grey level. The luminance bar has a risetime of 125 ns and a width of 4 \(\mu s \). Six individual sine wave bursts compose the multiburst. The frequencies are: 0.5, 1, 2, 3, 3.579 and 4.2 MHz.

Applications:
Irregularities of the amplitude vs frequency response in the time domain can be determined with the aid of the multiburst. The modulated pedestal permits chrominance/luminance intermodulation and subcarrier phase and amplitude to be determined.

ITS 3
FCC COMPOSITE SIGNAL

Description:
This signal consists of
- a 5 step staircase modulated with the subcarrier, the maximum luminance amplitude being 80 IRE
- a 2T pulse
- a modulated 12.5T pulse and
- a 100 IRE luminance bar.

Applications:
5 step staircase with superimposed subcarrier: determination of the differential phase and gain of the subcarrier
2T pulse: testing amplitude, echoing and group delay response of the transmission link
12.5 T pulse: precise assessment of the amplitude and group delay response in the region of the subcarrier referred to the lower frequency range of the luminance signal
100 IRE luminance bar: measurement of pulse distortions at low frequencies by evaluating the pulse top and is used as the white level reference.
ITS4
VIRS (Vertical Interval Reference Signal)

CCVS Description:
This is a reference signal which is generally inserted into the line 19 of the first field. The signal components are:
- 70 IRE luminance bar modulated with the subcarrier of $U_{pp} = 40$ IRE at $\varphi = 180^\circ$ followed by a
- 50 IRE grey pedestal and ends with a
- 7.5 IRE setup.

Applications:
The signal is used as the reference for the chrominance to correct phase and amplitude errors on the transmission link.

ITS 5
MULTIBURST

Description:
A 100 IRE reference pulse is followed by six sine wave bursts of 0.5, 1, 2, 3, 3.579 and 4.2 MHz. The amplitude of the bursts is $U_{pp} = 100$ IRE on a 50 IRE luminance pedestal.

Applications:
Irregularities of the amplitude vs frequency response in the time domain can be determined with the aid of the multiburst.

ITS 6
MODULATED PEDESTAL

Description:
The subcarrier burst of different amplitudes is superimposed on a 50 IRE grey pedestal. The subcarrier’s phase is $\varphi = 90^\circ$ and the levels are $U_{pp} = 20, 40$ and 80 IRE.

Applications:
- determination of chrominance/luminance intermodulation
- subcarrier phase error as function of the SC level
- subcarrier amplitude error as function of the SC level
ITSY 7

CCVS 12.5T 2T BAR

Description:
The 12.5T pulse (HAD 1.56 µs) is followed by a 2T pulse (HAD 250 ns) and the luminance bar all with amplitudes of 100 IRE.
The subcarrier has $U_{pp} = 100$ IRE at $\varphi = 180^\circ$.

Applications:
Y 12.5 T pulse:
precise assessment of the amplitude and group delay response in the region of the subcarrier referred to the lower frequency range of the luminance signal.

Cb 2T pulse:
testing amplitude, echoing and group delay response of the transmission link
100 IRE luminance bar:
measurement of pulse distortions at low frequencies by evaluating the pulse top and is used as the white level reference

Cr

ITS 8, 9, 10, 11
H SWEEP 1, H SWEEP 2, H SWEEP 3, H SWEEP 4

CCVS Description:
The H SWEEP covers the whole frequency range over a line, starting at 5.5 MHz at the beginning of the line going down to 0 Hz in the middle of the line and rising again to 5.5 MHz at the end of the line. The signal has 100IRE amplitude and a flat frequency response at a high energy density over the whole frequency range. It is superimposed on a 50 IRE grey level.

It is generated with the phases:
180° (H SWEEP 1), 270° (H SWEEP 2),
0° (H SWEEP 3) and 90° (H SWEEP 4).

CCVS Applications:
If the signal is analyzed in the time domain, both amplitude and group delay vs frequency response can clearly be seen. In case of pure amplitude vs frequency distortion the sweep envelope is distorted symmetrically with respect to the middle of the line, in case of pure group delay distortion the sweep envelope has ripple which is unsymmetrical with respect to the middle of the line. If both amplitude and group delay distortion are present, the unsymmetrical ripple and the envelope which is symmetrical with respect to the middle of the line are superposed.
As the H SWEEP is generated with the phases 0°/90° and 180°/270° the amplitude response and the group delay response can be displayed in the frequency domain by means of the Complex Fourier Transform without the discontinuities which occur using only one H SWEEP. To limit effects of nonlinear distortions the H SWEEPs 1 and 2 should be inverted and added to the H SWEEPs 3 and 4. This ensures reliable analysis.

ITS 12

2T PULSE

Description:
A cos² pulse with a half amplitude duration (HAD) of 250 ns is positioned in the middle of the active line.

Applications:
amplitude errors, group delay indicator and reflections to ± 26μs.

ITS 13

SIN X/X

Description:
In the analogue world the SIN X/X pulse is generated by applying a Dirac pulse, which should be as ideal as possible, to a group delay compensated low pass filter. The special feature of the pulse produced in this way is that its energy is distributed uniformly over the whole frequency spectrum. Therefore the amplitude and group delay responses are flat within the flat frequency range of the used lowpass filter.

The SIN X/X signal from the SAF and SFF contains two of these pulses, which in this case are generated digitally by calculating the pulses within a video bandwidth of 6 MHz with theoretical flat amplitude and group delay response. The first is a positive going pulse with an amplitude of 575 mV superposed on a 125 mV grey level, the second is a negative going pulse with an amplitude of 575 mV superimposed on a 575 mV grey level.

Applications:
To find the frequency response of a DUT the SIN X/X signal can be analyzed directly with a spectrum analyzer. In order to limit the effects of non linear distortion, a positive going and a negative going SIN X/X is generated. Inverting one of them and adding it to the other suppresses in optimal manner the influence of this distortion.

The signal is a very sensitive indicator of group delay distortion. When distortion is present, the preshoot and postshoot are displayed with different amplitudes on the oscilloscope. Using an FFT analyzer the amplitude and group delay vs frequency response of this signal can be analyzed precisely. Because of its low energy content this signal must not be noisy; in this case a H SWEEP is the better alternative.
ITS 14
MULTIPULSE
Description:
A sequence of modulated \(\cos^2 \) pulses with 100 IRE amplitude follow a luminance bar (width 4\(\mu \)s) and a 2T pulse (HAD 250ns) with 100 IRE amplitude.
The first pulse is modulated with 1 MHz and has a HAD of 2\(\mu \)s. All others have a HAD of 1\(\mu \)s and are modulated with 2, 3, 4 and 5 MHz.

Applications:
The amplitudes of the modulated \(\cos^2 \) pulses are referred to the luminance bar at the start of the line to determine the amplitude vs frequency response. In this way, the deviation from the nominal amplitude can be determined at each frequency. To determine the group delay vs frequency response, the baseline distortion of the sine waves oscillations, which are generated symmetrically with respect to the center of each pulse, are analyzed.

ITS 15
RAMP
Description:
The ramp signal is a sawtooth which rises over the whole active line and has an amplitude of 100 IRE.

Applications:
The ramp signal, like various staircase signals, is used to check line time nonlinearity. It can also be used to measure S/N ratio (signal to noise) over the whole level range or to measure quantization noise in A/D and D/A converter systems.

ITS 16
RAMP MOD. 40 IRE
Description:
A subcarrier with \(U_{pp} = 40 \) IRE is superposed on sawtooth which rises over the whole active line and has an amplitude of 100 IRE.

Applications:
The signal is used to measure nonlinear distortions, like differential gain and phase, on the subcarrier.
ITS 17
15 KHz

CCVS

Description:
A line time squarewave with 100 IRE amplitude and a rise time of 250 ns is generated.

Applications:
The 15 KHz squarewave can be used to measure the gain and the pulse response at medium frequencies with respect to the video bandwidth. This is shown by line time tilt.

ITS 18
250 KHz

CCVS

Description:
This signal is composed of squarewave pulses with a frequency of 250 KHz and a rise time of 250 ns.

Applications:
The squarewave signal is used to measure the pulse response at medium frequencies with respect to the video bandwidth, e.g. overshoots and rounding.

ITS 19
COLOUR BARS 77/7.5/77/7.5

CCVS

Description:
In accordance with RS - 189 - A the colour bars are produced with 77 IRE luminance amplitude and 77 IRE colour saturation at 7.5 IRE setup.

Applications:
The colour bars are the standard signal for checking and setting the phase and level of a CCVS and for a quick check of colour monitors. The colour coding in particular can be rapidly and simply checked with a vectorscope.
ITS 20
RED FIELD

Description:
The amplitude phase and rise time are the same as those of the red bar in the 77/7.5/77/7.5 colour bars.

Applications:
The red area signal is particularly suitable for assessing and measuring unwanted amplitude and phase modulation of the subcarrier such as it occurs with VTRs. The unwanted modulation is called "colour noise", or AM noise and PM noise.

ITS 21
BLACKBURST

Description:
The BLACKBURST furnishes all sync pulses and bursts. The active line is at blanking level (0 IRE).

Applications:
This signal is used as genlock signal for external equipment.

ITS 22
BLACK

Description:
The BLACKBURST furnishes all sync pulses and bursts. The active line is at 7.5 IRE.

Applications:
This signal is used as genlock signal for external equipment (see also ITS 21) and for adjusting the black level at monitors.

ITS 23
WHITE 100 IRE

Description:
This signal is a white bar with 100 IRE amplitude, which covers the whole active line.

Applications:
- testing clamping circuits at 100 IRE APL
- measuring noise voltage as a function of modulation
- testing the maximum beam current of CRTs
ITS 24, 25
TELETEXT TESTLINE 1, 2

Description:
The teletext testlines consist of two fixed data signals of 5.72727 Mbit/s. After the 16 bit run in (sequence of ones and zeros) follows the framing code FFhex and data defined for measuring purpose. The data toggles from TESTLINE 1 to TESTLINE 2. This is assumed to be an optimal simulation of program teletext. The basic amplitude is 70 IRE.

CCVS

Applications:
Measuring
- timing within the line
- number of run in bits
- decoding margin
- timing margin
- basic and peak to peak amplitude
2. Signal Group APL (Average Picture Level)

2.1 List of Signals

<table>
<thead>
<tr>
<th>APL</th>
<th>1</th>
<th>APL 10 %</th>
<th>5</th>
<th>APL 10/90 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>APL 12.5%</td>
<td>6</td>
<td>APL 12.5/87.5%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>APL 90 %</td>
<td>7</td>
<td>BOUNCE</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>APL 87 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 Signal Description

APL 1, 2, 3, 4
APL 10%, 12.5%, 90%, 87.5%

Description:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period in lines</th>
<th>Lines black</th>
<th>Lines white</th>
<th>Signal (selectable, see table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APL 10%</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>Ramp mod. 200 mV</td>
</tr>
<tr>
<td>APL 12.5%</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>Ramp mod. 200 mV</td>
</tr>
<tr>
<td>APL 90%</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>Ramp mod. 200 mV</td>
</tr>
<tr>
<td>APL 87.5%</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>Ramp mod. 200 mV</td>
</tr>
</tbody>
</table>

Selectable Signals:

- BLACKBURST 2T PULSE CORING
- NTC 7 COMPOSIT SIN X/X 5 STEPS
- NTC 7 COMBINED MULTIPULSE 10 STEPS
- FCC COMPOSITE BLACK 5 STEPS MOD. 40 IRE
- VIRS GREY 10 IRE 10 STEPS MOD. 40 IRE
- MULTIBURST GREY 50 IRE RAMP
- MOD. PEDESTAL GREY 90 IRE RAMP MOD. 1MHz 40 IRE
- H SWEEP 1 WHITE 100 IRE RAMP MOD. 40 IRE
- H SWEEP 2 12.5T 2T BAR COLOUR BARS 77/7.5/77/7.5
- H SWEEP 3 15 KHz RED FIELD
- H SWEEP 4 250

Applications:
- measuring signal parameters according to the selected signal line at constant average picture level,
 for example RAMP MOD. 200mV:
 differential gain and phase
APL 5, 6
APL 10/90%, 12.5/87.5%

Description:
The signal alternates between APL 10% or 12.5% and 90% or 87.5%. The time interval is adjustable.

Applications:
- measuring signal parameters according to the selected signal line when the average picture level is changing in jumps
- testing clamping circuits and sync separators

APL 7
BOUNCE

Description:
During the selected time interval the grey level jumps between the selected levels.

Setting facilities provided by the APL menu:
The softkey of the last menu line named "MODIFY APL + BOUNCE PARAMETER" opens the menu page as shown at the left side:
- to select the signal (SELECT SIGNAL)
- to switch over from the internally selected time interval to the external trigger facility TRIG INT/EXT (connector X 64 at the rear of the instrument)
- selecting the time interval (TIME)
- setting the levels between the APL jumps (LEVEL 1, LEVEL 2)
The TIME interval is valid for all alternating APL signals, LEVEL 1 and LEVEL 2 only for the BOUNCE signal (APL 7).

Applications:
- testing clamping circuits and sync separators
- amplitude vs frequency response for white, black and adjustable levels as required for transmitter measurements
3. Signal Group SPECIAL

3.1 List of Signals

<table>
<thead>
<tr>
<th></th>
<th>SIGNAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VTR SIGNAL</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>TELETEXT TESTSIGNAL</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>SPLITLEVEL</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>CORING</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>SIN X/X</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>15 KHz 125 ns</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>250 KHz 125ns</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>VECTORSCOPE TEST</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>GREY 10 IRE</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>GREY 50 IRE</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>GREY 90 IRE</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>BOWTIE</td>
<td>24</td>
</tr>
</tbody>
</table>

3.2 Signal Description

**SPECIAL 1
VTR SIGNAL**

Description:
At the start of the picture area the ITS area is repeated three times, in each case separated by 16 lines. The upper half of the remaining picture area is occupied by the NTC 7 COMPOSITE SIGNAL the lower half by the COLOUR BARS 77/7.5/77/7.5

Applications:
The signal is used as a reference leader for manual or automatic VTR alignment. The additional triple repetition of insertion line area means that each video head with four head machines can be investigated separately with a video analyzer.

**SPECIAL 2
TELETEXT TESTSIGNAL**

Description:
The teletext test signal (eye test pattern) consists of a fixed data signal of 5.72727 Mbit/sec and a reference sequence signal of ones and zeros (run in) with the same bit rate. Alternating from line to line the two signals are produced with positive and negative polarity so that a fixed sequence of four lines is obtained.

Applications:
On an oscilloscope triggering at the positive (or negative) data transition this signal makes it easy to recognize where the 50% crossings of the data signal occur with respect to the reference clock. This clock (run in) consists of only one frequency and is therefore an accurate timing reference. This measurement determines the teletext parameter "Eye Width" or "Timing Margin". At the peak points of the reference clock the difference of the most positive amplitude of a "zero" data and the most negative level of a "one" data determines the "Eye Height" or "Decoding Margin".
SPECIAL 3

CCVS SPLIT LEVEL

Description:
The active picture on the monitor is split into three areas:
- top red wedge
- center green wedge
- bottom blue wedge

The components Y, Cb and Cr of this signal are selected so that ramps with 100 IRE amplitude are produced in the three primary colours in the RGB format.

Applications:
- testing the RGB matrix formation
- checking A/D converters in the RGB channels for missing codes
- measuring the line time nonlinearity in the RGB channels

Cb

Cr

SPECIAL 4

CORING

Description:
The CORING signal comprises three triangular butterfly pulses modulated with the frequencies 1, 2 and 3 MHz. Each butterfly is 16 µs wide with an amplitude of 10 IRE. They are superposed on a 50 IRE grey level.

Applications:
Coring circuits are used in cameras and video recorders to improve the signal to noise ratio. The coring circuit removes low amplitude noise at higher frequencies by selective suppression. However the resolution of fine picture details may be affected. The coring signal is an important aid for setting and checking the turn off levels of coring circuits.

The length of the area in the middle of each butterfly where the sine wave is suppressed shows up to which level the circuitry is active.
SPECIAL 5
SIN X/X
Description: In the analogue world the SIN X/X pulse is generated by applying a Dirac pulse, which should be as ideal as possible, to a group delay compensated low pass filter. The special feature of the pulse produced in this way is that its energy is distributed uniformly over the whole frequency spectrum. Therefore the amplitude and group delay responses are flat within the flat frequency range of the used lowpass filter.
The SIN X/X signal from the SAF and SFF contains two of these pulses, which in this case are generated digitally by calculating the pulses within a video bandwidth of 6 MHz with theoretical flat amplitude and group delay response. The first is a positive going pulse with an amplitude of 575 mV superposed on a 125 mV grey level, the second is a negative going pulse with an amplitude of 575 mV superimposed on a 575 mV grey level.
Applications:
To find the frequency response of a DUT the SIN X/X signal can be analyzed directly with a spectrum analyzer. In order to limit the effects of non linear distortion, a positive going and a negative going SIN X/X is generated. Inverting one of them and adding it to the other suppresses in optimal manner the influence of this distortion.
The signal is a very sensitive indicator of group delay distortion. When distortion is present, the preshoot and postshoot are displayed with different amplitudes on the oscilloscope. Using an FFT analyzer the amplitude and group delay vs frequency response of this signal can be analyzed precisely. Because of its low energy content his signal must not be noisy; in this case a H SWEEP is the better alternative.

SPECIAL 6
CCVS 15 KHz 125 ns
Description: A line time squarewave with 100 IRE amplitude and a rise time of 125 ns is generated.
Applications:
- the 15 KHz squarewave can be used to measure the gain and the pulse response at medium frequencies with respect to the video bandwidth. This is shown by line time tilt
- aligning of the group delay using preshoots and postshoots on the 125 ns edge and the 15 KHz /125 ns mask used for TV transmitter measurements

SPECIAL 7
CCVS 250 KHz 125ns
Description: A 250 KHz squarewave with 100 IRE amplitude and a rise time of 125 ns is generated.
Applications:
- the squarewave signal is used to measure the pulse response at medium frequencies with respect to the video bandwidth, e.g. overshoots and rounding.
- aligning of the group delay using preshoots and postshoots on the 125 ns edge and the 250 KHz /125 ns mask
SPECIAL 8
VECTORSCOPE TEST

Description:
Colour subcarrier bursts with $U_{pp} = 100$ IRE are superposed on a 50 IRE grey level. Over the frame there are 36 areas each 13 lines long, where the subcarrier phase is incremented in steps of 10°. Applications:
If the vectorscope is aligned correctly, this signal is displayed as a circle of 36 dots on the screen.

SPECIAL 9, 10, 11
CCVS GREY 10, 50, 90 IRE

Description:
Grey signals with luminance levels of 10, 50 and 90 IRE.

Applications:
(similar to APL 7 BOUNCE or ITS 23 WHITE)
- checking the S/N ratio at different grey levels
- measuring the amplitude vs frequency response via externally loaded sweep signal depending on the luminance level
- Checking CRT beam currents at various grey levels
SPECIAL 12

BOWTIE

CCVS

Description:
The Y component alternately contains measurement markers (interval 10ns) or a 500 KHz sine wave signal with $U_{pp} = 100$ IRE. The Cb and Cr components each contain a 502 KHz sine wave with $U_{pp} = 100$ IRE. The signal in CCVS is not legal.

Applications:
By substraction Y - Cb or Y - Cr, a 2 KHz beat frequency is produced. If the delays of both components are the same, the zero crossing lies exactly in the middle of the active line (exactly on the zero measurement marker).
The delay difference between the components can be read off at the amplitude minimum.

SPECIAL 13

DELAY TEST 1 MHz

CCVS

Description:Like BOWTIE only Y has a 1 MHz and Cb and Cr both have a 1.002 MHz sine wave. The distance of the measurement markers has 5 ns.

Applications:
Same as for BOWTIE but with twice the measurement accuracy.
SPECIAL 14
H SWEEP 4.2 MHz Y, Cb, Cr

CCVS

Description:
The monitor is divided into three areas: top H SWEEP in Y, center H SWEEP in Cr and bottom H SWEEP in Cb.

Applications:
The amplitude and group delay vs frequency response can be analyzed for each component separately on an oscilloscope. In case of pure amplitude vs frequency distortion, the sweep envelope is distorted symmetrically with respect to the middle of the line. In case of pure group delay distortion, the sweep envelope has ripple which is unsymmetrical with respect to the middle of the line. If both amplitude and group delay distortion are present, the unsymmetrical ripple and the envelope which is symmetrical with respect to the middle of the line are superposed.

The amplitude response and the group delay response can also be displayed in the frequency domain by means of the Fourier Transform. The H SWEEP’s very high spectral density over the whole frequency range ensures in this case very accurate results even in noisy signals.

SPECIAL 15, 16
C. BARS 125 ns, 200 ns 77/7.5/77/7.5

R

Description:
The colour bars are specified to RS - 189 - A only the rise and fall times of the bar transitions are equal in all components Y, Cb, Cr and R, G, B with 125 ns or 200 ns. A RGB analogue matrix therefore should not produce peaks and troughs when it is supplied by Y, Cb and Cr.

Applications:
- transient response in case of signals with high bandwidth (125 ns corresponds to 8 MHz).
- colour purity
- see also ITS 19
SPECIAL 17
RAMP + Y, Cb, Cr

Description:
The components contain: Y a ramp 0 IRE to 100 IRE
Cb, Cr a ramp -50 IRE to +50 IRE

This signal is not valid with composite format.

Applications:
- line time nonlinearity in analogue component systems
- A/D converter tests in the Y, Cb, Cr branches with digital signal
processing, testing for linearity and missing codes with rising ramp
signals over full level in the active line.

Cb = Cr

SPECIAL 18
RAMP - Y, Cb, Cr

Description:
The components contain: Y a ramp 0 IRE to 100 IRE
Cb, Cr a ramp +50 IRE to -50 IRE

This signal is not valid with composite format.

Applications:
- line time nonlinearity in analogue component systems
- A/D converter tests in the Y, Cb, Cr branches with digital signal
processing, testing for linearity and missing codes with rising ramp (Y)
and falling ramp (Cb, Cr) signals over full level in the active line.

Cb = Cr

SPECIAL 19
CCVS STAICASE + Y, Cb, Cr

Description:
The components contain: Y a 5 step staircase 0 IRE to 100 IRE
Cb, Cr a 5 step staircase -50 IRE to +50 IRE

This signal is not valid with composite format.

Applications:
Line time nonlinearity measurement for all three components with spike
filters on rising staircases.

Cb = Cr
SPECIAL 20

CCVS STAIRCASE - Y, Cb, Cr

Description:
The components contain:
- Y: a 5 step staircase 0 IRE to 100 IRE
- Cb, Cr: a 5 step staircase +50 IRE to -50 IRE

This signal is not valid with composite format.

Applications:
- Y: Line time nonlinearity measurement for all three components with spike filters on rising (Y) and falling (Cb, Cr) staircases.
- Cb = Cr

SPECIAL 21

CCVS TRIANGLE 1 Y, Cb, Cr

Description:
The components contain:
- Y: a triangular voltage in the active line going from 0 IRE at the beginning to 100 IRE in the middle of the line to 0 IRE at the end of the line.
- Cb, Cr: a triangular voltage in the active lines going from -50 IRE at the beginning of the line to +50 IRE in the center of the line to -50 IRE at the end of the line.

This signal is not valid with composite format.

Applications:
- line time nonlinearity with both signal polarities in one line
- Cb = Cr
- rapid test on A/D converters for linearity deviations and missing codes with rising and falling ramps in all three components.

CCVS SPECIAL 22

TRIANGLE 2 Y, Cb, Cr

Description:
Like SPECIAL 21, but the polarity of Cb and Cr is inverted.
This signal is not valid with composite format.

Applications:
- Y: See SPECIAL 21
- Cb = Cr
SPECIAL 23
NONLINEARITY TEST

Description:
Ramp signals in Y, Cb and Cr which in RGB mode give ramps with
maximum level (0 to 100 IRE) and different gradients. The
NONLINEARITY TEST is generated to the IBA Code of Practice, 1987.
This is a valid composite signal.

Applications:
Testing nonlinearities in Y, Cb, Cr and for the most part with RGB using
suitable spike filters (Code of Practice, Section 7, Ref. 7.50).
SPECIAL 24
COLOUR CUBE

CCVS field

Description:
Ramp signals in Y, Cb, Cr which, with composite (CCVS) coding,
describe the limits of the valid signals (see vectorscope).
This is particularly clear in RGB mode.

Applications:
Detecting gamut errors

Vectorscope

Y
Cb
Cr
R
G
B
4. Signal Group SWEEP + BURST

4.1 List of Signals

<table>
<thead>
<tr>
<th>SWEEP + BURST</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H SWEEP</td>
<td>6 RGB SWEEP 3.25 MHz</td>
</tr>
<tr>
<td>2 V SWEEP</td>
<td>7 RGB SWEEP 4.2 MHz</td>
</tr>
<tr>
<td>3 MULTIBURST</td>
<td>8 BURST WITH VAR.FREQUENCY</td>
</tr>
<tr>
<td>4 MULTIPULSE</td>
<td>9 V SWEEP WITH VAR.MARKER</td>
</tr>
<tr>
<td>5 CORING</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Signal Description

SWEEP + BURST 1

H SWEEP

Description:
The H SWEEP signals ITS 8, 9, 10, 11 which cover the frequency range 5.5 - 0 - 5.5 MHz, each take up a quarter of the monitor screen:

- 1st quarter: H SWEEP 3 0°
- 2nd quarter: H SWEEP 4 90°
- 3rd quarter: H SWEEP 1 180°
- 4th quarter: H SWEEP 2 270°

Applications:
Measurements as described under ITS 8, 9, 10, and 11, but full field measurements.

SWEEP + BURST 2

V SWEEP

Description:
SWEEP signal with field frequency:
- initial frequency: 50 KHz
- final frequency: 6 MHz
- frequency marker at multiples of 1 MHz
- frequency deviation per line: 25 KHz

Applications:
Determination of amplitude vs frequency response with high frequency resolution.
SWEEP + BURST 3
MULTIBURST

Description:
A 100 IRE reference pulse is followed by six sine wave bursts of 0.5, 1, 2, 3, 3.579 and 4.2 MHz. The amplitude of the bursts is $U_{pp} = 100$ IRE on a 50 IRE luminance pedestal.

Applications:
Irregularities of the amplitude vs frequency response in the time domain can be determined with the aid of the multiburst.

SWEEP + BURST 4
MULTIPULSE

Description:
A 100 IRE reference pulse is followed by six sine wave bursts of 0.5, 1, 2, 3, 3.579 and 4.2 MHz. The amplitude of the bursts is $U_{pp} = 100$ IRE on a 50 IRE luminance pedestal.

Applications:
Irregularities of the amplitude vs frequency response in the time domain can be determined with the aid of the multiburst.

SWEEP + BURST 5
CORING

Description:
The CORING signal comprises three triangular butterfly pulses modulated with the frequencies 1, 2 and 3 MHz. Each butterfly is 16 μs wide with an amplitude of 10 IRE. They are superposed on a 50 IRE grey level.

Applications:
Coring circuits are used in cameras and video recorders to improve the signal-to-noise ratio. The coring circuit removes low amplitude noise at higher frequencies by selective suppression. However the resolution of fine picture details may be affected. The coring signal is an important aid for setting and checking the turn off levels of coring circuits. The length of the area in the middle of each butterfly where the sine wave is suppressed shows up to which level the circuitry is active.
SWEEP + BURST 6
RGB SWEEP 3.25 MHz

Description:
H SWEEP signals with the 3.25 - 0 - 3.25 MHz format using Y, Cb, Cr coding which in RGB format gives H SWEEP signals in the pure primary colours with the maximum legal level range of 0 to 100 IRE. The sweeps are displayed sequentially on the monitor:

<table>
<thead>
<tr>
<th>Top</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Green</td>
</tr>
<tr>
<td>Bottom</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Applications:
- frequency response of amplitude and group delay in the RGB channels
- timing errors when the component signals are compressed to obtain MAC signals as a function of frequency

SWEEP + BURST 7
H SWEEP 4.2 MHz

Description:
H SWEEP signals with the 4.2 - 0 - 4.2 MHz format using Y, Cb, Cr coding which in RGB format gives H SWEEP signals in the pure primary colours with the maximum legal level range of 0 to 100 IRE. The sweeps are displayed sequentially on the monitor:

<table>
<thead>
<tr>
<th>Top</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Green</td>
</tr>
<tr>
<td>Bottom</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Applications:
- frequency response of amplitude and group delay in the RGB channels
- timing errors when the component signals are compressed to obtain MAC signals as a function of frequency
SWEEP + BURST 8
SINE SIGNAL (FREQUENCY VAR)

Description:
A sine wave signal with selectable frequency in the range 0 to 6 MHz in steps of 1 KHz and $U_{pp} = 100$ IRE is superimposed to a 50 IRE grey level.

Applications:
Base band:
- accurate measurements at critical frequencies, such as subcarrier Transmitter measurement:
- precise determination of Nyquist slope in vestigial side band operation
- intermodulations measurement or checking the adjacent channel emission

SWEEP + BURST 9
V SWEEP (MARKER VARIABLE)

Description:
V SWEEP like SWEEP + BURST 2 without the markers for 3 and 5 MHz, but with a variable frequency marker which is settable line per line over vertical sweep and the corresponding frequency is indicated on the display.

Applications:
Determination of amplitude vs frequency response with high frequency resolution. The marker shows the exact frequency where for instance critical distortions occur.
5. Signal Group PULSE + BAR

5.1 List of Signals

<table>
<thead>
<tr>
<th>PULSE + BAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 WINDOW PLUGE</td>
<td>7 250 KHz</td>
</tr>
<tr>
<td>2 12.5T 2T BAR</td>
<td>8 60 Hz 1</td>
</tr>
<tr>
<td>3 MULTIPULSE</td>
<td>9 60 Hz 2</td>
</tr>
<tr>
<td>4 2T PULSE</td>
<td>10 60 Hz 3</td>
</tr>
<tr>
<td>5 SIN X/X</td>
<td>11 NTC 7 COMPOSITE</td>
</tr>
<tr>
<td>6 15 KHz</td>
<td>12 FCC COMPOSITE</td>
</tr>
</tbody>
</table>

5.2 Signal Description

PULSE + BAR 1

WINDOW PLUGE

Description:

The WINDOW + PLUGE signal comprises the following signal elements:

- The first vertical half of the full field signal includes a 2T pulse and a modulated 12.5T pulse with SC at $\varphi = 0^\circ$.
- The second vertical half of the full field signal includes in the upper and the lower part a PLUGE signal of ± 4 IRE and in the centre a white window.

The signal elements are arranged on a black (0 IRE) background.

Applications:

- 12.5 T pulse: precise assessment of the amplitude and group delay response in the region of the subcarrier referred to the lower frequency range of the luminance signal.

PULSE + BAR 2

12.5 T 2T BAR

CCVS

Description:

The 12.5T pulse (HAD 1.56 μs) is followed by a 2T pulse (HAD 250 ns) and the luminance bar all with amplitudes of 100 IRE. The subcarrier has $U_{pp} = 100$ IRE at $\varphi = 180^\circ$.

Applications:

- 12.5 T pulse: precise assessment of the amplitude and group delay response in the region of the subcarrier referred to the lower frequency range of the luminance signal.
2T pulse:
testing amplitude, echoing and group delay response of the transmission link

100 IRE luminance bar:
measurement of pulse distortions at low frequencies by evaluating the pulse top and is used as the white level reference

PULSE + BAR 3
MULTIPULSE

Description:
A 100 IRE reference pulse is followed by six sine wave bursts of 0.5, 1, 2, 3, 3.579 and 4.2 MHz. The amplitude of the bursts is $U_{pp} = 100$ IRE on a 50 IRE luminance pedestal.

Applications:
Irregularities of the amplitude vs frequency response in the time domain can be determined with the aid of the multiburst.

PULSE + BAR 4
2T PULSE

Description:
A \cos^2 pulse with a half amplitude duration (HAD) of 250 ns is positioned in the middle of the active line.

Applications:
amplitude errors, group delay indicator and reflections to $\pm 26\mu s$.

PULSE + BAR 5
SIN X/X

Description:
In the analogue world the SIN X/X pulse is generated by applying a Dirac pulse, which should be as ideal as possible, to a group delay compensated low pass filter. The special feature of of the pulse produced in this way is that its energy is distributed uniformly over the whole frequency spectrum. Therefore the amplitude and group delay responses are flat within the flat frequency range of the used lowpass filter.

The SIN X/X signal from the SAF and SFF contains two of these pulses, which in this case are generated digitally by calculating the pulses within a video bandwidth of 6 MHz with theoretical flat amplitude and group delay response. The first is a positive going pulse with an amplitude of 575 mV superposed on a 125 mV grey level, the second is a negative going pulse with an amplitude of 575 mV superimposed on a 575 mV grey level.
Applications:
To find the frequency response of a DUT the SIN X/X signal can be analyzed directly with a spectrum analyzer. In order to limit the effects of non linear distortion, a positive going and a negative going SIN X/X is generated. Inverting one of them and adding it to the other suppresses in optimal manner the influence of this distortion.
The signal is a very sensitive indicator of group delay distortion. When distortion is present, the preshoot and postshoot are displayed with different amplitudes on the oscilloscope. Using an FFT analyzer the amplitude and group delay vs frequency response of this signal can be analyzed precisely. Because of its low energy content this signal must not be noisy; in this case a H SWEEP is the better alternative.

PULSE + BAR 6
15 KHz

Description:
A line time squarewave with 100 IRE amplitude and a rise time of 250 ns is generated.

Applications:
The 15 KHz squarewave can be used to measure the gain and the pulse response at medium frequencies with respect to the video bandwidth. This is shown by line time tilt.

PULSE + BAR 7
250 KHz

Description:
This signal is composed of squarewave pulses with a frequency of 250 KHz and a rise time of 250 ns.

Applications:
The squarewave signal is used to measure the pulse response at medium frequencies with respect to the video bandwidth, e.g. overshoots and rounding.

PULSE + BAR 8, 9, 10
field 60 Hz 1, 60 Hz 2, 60 Hz 3

Description:
This signal is a field repetitive squarewave with 100 IRE amplitude, whose white section lies in the center 60 Hz 2 and top 60 Hz 3 of the TV-screen.

Applications:
- using this signal, errors in the lowest frequency range of the video signal can be detected, for example effects caused by defective clamping circuits.
- faults of this kind are displayed as field time tilt or black level discontinuities.
- when AC coupling is used for this signal, the effects of too low time constants are immediately visible on the oscilloscope.
- test of the high voltage stabilisation on monitors
PULSE + BAR 11
NTC 7 COMPOSITE

Description:
The luminance bar is followed by a 2T pulse (HAD 250 ns) and a modulated 12.5T pulse (HAD 1.56 µs) all with amplitudes of 100 IRE. The 5 steps reach an amplitude of 90 IRE. The superposed subcarrier has

\[U_{pp} = 40 \text{ IRE at } \varphi = 180°. \]

Applications:
This signal combination is mainly used as test line for automatic measurement and monitoring of TV signals. The luminance bar also serves as amplitude reference for automatic level control. The following distortions can be measured using the NTC7 COMP. signal:

- **Luminance bar:** level errors, line time waveform, distortion, overshoot and rounding
- **2T pulse:** amplitude errors, group delay indicator and reflection
- **12.5T pulse:** amplitude, intermodulation and delay differences between luminance and chrominance
- **Modulated staircase:** differential gain and phase, line time nonlinearity

PULSE + BAR 12
FCC COMPOSITE

Description:
This signal consists of:
- a 5 step staircase modulated with the subcarrier, the maximum luminance amplitude being 80 IRE
- a 2T pulse
- a modulated 12.5T pulse and
- a 100 IRE luminance bar.

Applications:
5 step staircase with superimposed subcarrier:
- determination of the differential phase and gain of the subcarrier
- 2T pulse:
 - testing amplitude, echoing and group delay response of the transmission link
- 12.5 T pulse:
 - precise assessment of the amplitude and group delay response in the region of the subcarrier referred to the lower frequency range of the luminance signal.
- 100 IRE luminance bar:
 - measurement of pulse distortions at low frequencies by evaluating the pulse top and is used as the white level reference
6. Signal Group LINEARITY
6.1 List of Signals

<table>
<thead>
<tr>
<th>LINEARITY</th>
<th>6.1 List of Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 STEPS</td>
<td>10 SHALLOW RAMP Y</td>
</tr>
<tr>
<td>2 5 STEPS MOD. 40 IRE</td>
<td>11 SHALLOW RAMP Y, Cb, Cr *</td>
</tr>
<tr>
<td>3 10 STEPS</td>
<td>12 RAMP + Y, Cb, Cr *</td>
</tr>
<tr>
<td>4 10 STEPS MOD. 40 IRE</td>
<td>13 RAMP - Y, Cb, Cr *</td>
</tr>
<tr>
<td>5 RAMP</td>
<td>14 STAIRCASE+ Y, Cb, Cr *</td>
</tr>
<tr>
<td>6 RAMP MOD. 1 MHz 40 IRE</td>
<td>15 STAIRCASE - Y, Cb, Cr *</td>
</tr>
<tr>
<td>7 RAMP MOD. 40 IRE</td>
<td>16 TRIANGLE 1 Y, Cb, Cr *</td>
</tr>
<tr>
<td>8 V STAIRCASE +</td>
<td>17 TRIANGLE 2 Y, Cb, CR *</td>
</tr>
<tr>
<td>9 V STAIRCASE -</td>
<td>18 NONLINEARITY TEST</td>
</tr>
</tbody>
</table>

6.2 Signal Description

LINEARITY 1

5 STEPS

Description:
The active line is divided up into 6 equal sections (8.66 µs). On each section the luminance level increases by 20 IRE. No colour is superposed.

Applications:
Measuring the line time nonlinearity with spike filters or direct measurement of the step amplitudes

LINEARITY 2

5 STEP MOD. 40 IRE

Description:
Like LINEARITY 1, but a subcarrier with $U_{pp} = 40$ IRE and $\varphi = 90^\circ$ is superposed. As colour is also superposed on black and white, gamut errors are produced in the red and the green channel

Applications:
Measuring differential distortion (differential gain and phase).

LINEARITY 3

10 STEPS

Description:
The active line (52.556 µs) is divided into eleven equal parts (10 steps) each of 4.78 µs length. No colour is superposed.

Applications:
Measuring line time nonlinearity with spike filters.
LINEARITY 4
10 STEPS MOD. 40 IRE

Description:
Like LINEARITY 3, but a subcarrier with $U_{pp} = 40$ IRE and $\varphi = 90^\circ$ is superposed. As colour is also superposed on black and white, gamut errors are produced in the red and the green channel.

Applications:
Measuring differential distortion (differential gain and phase).

LINEARITY 5
RAMP

Description:
The ramp signal is a sawtooth which rises over the whole active line and has an amplitude of 100 IRE.

Applications:
The ramp signal, like various staircase signals, is used to check line time nonlinearity. It can also be used to measure S/N ratio (signal to noise) over the whole level range or to measure quantization noise in A/D and D/A converter systems.

LINEARITY 6
RAMP MOD. 1 MHz 40 IRE

Description:
Like LINEARITY 5, but with a 1 MHz sine wave with $U_{pp} = 40$ IRE superposed.

Applications:
Measuring line time nonlinearity at 1 MHz

LINEARITY 7
RAMP MOD. 40 IRE

Description:
A subcarrier with $U_{pp} = 40$ IRE is superposed on sawtooth which rises over the whole active line and has an amplitude of 100 IRE.

Applications:
The signal is used to measure nonlinear distortions, like differential gain and phase on the subcarrier.
LINEARITY 8, 9

V STAIRCASE +, V STAIRCASE -
Description:

CCVS field

+(pos.)
With this signal the screen is split into eleven areas, each with full screen width and a duration of 22 lines per field so that there is a grey staircase with constant step height in the vertical direction. The amplitude of each step is 10 IRE, therefore the white step has 100 IRE. The staircase has two polarities:

-- (neg.)
from black to white and from white to black

Applications:
- checking linearity over the frequency deviation range in FM systems (for example VTRs)
- testing linearity errors in vertical direction in DSP (Digital Signal Processing) caused by rounding or vertical filtering

LINEARITY 10

SHALLOWRAMP Y

CCVS field

Description:

10 ramps with an amplitude of 70 IRE luminance, each on a 70 IRE higher setup. This means that each level range is covered with a flat ramp.

Applications:
- Detecting digitizing errors which are particularly noticeable with a shallow ramp. For fine setting use SETUP and Y or CVS in the AMPLITUDE menu.
LINEARITY 11

SHALLOW RAMP Y, Cb, Cr *

CCVS

Description:
Like LINEARITY 10, but the Cb and Cr components have shallow ramps with the same timing and gradation as the Y component.
initial amplitude for Cb and Cr - 50 IRE
final amplitude for Cb and Cr + 50 IRE

Applications:
Like LINEARITY 10, but with additional assessment possible in Cb and Cr.

LINEARITY 12

RAMP + Y, Cb, Cr *

CCVS

Description:
The components contain:
Y a ramp 0 IRE to 100 IRE
Cb, Cr a ramp -50 IRE to +50 IRE
This signal is not valid with composite format.

Applications:
- line time nonlinearity in analogue component systems
- A/D converter tests in the Y, Cb, Cr branches with digital signal processing, testing for linearity and missing codes with rising ramp signals over full level in the active line.

Cb = Cr
LINEARITY 13
RAMP - Y, Cb, Cr

CCVS
Description:
The components contain:
- Y: a ramp 0 IRE to 100 IRE
- Cb, Cr: a ramp +50 IRE to -50 IRE
This signal is not valid with composite format.

Applications:
- line time nonlinearity in analogue component systems
- A/D converter tests in the Y, Cb, Cr branches with digital signal processing, testing for linearity and missing codes with rising ramp (Y) and falling ramp (Cb, Cr) signals over full level in the active line.

Ln = Cn

LINEARITY 14
STAIRCASE + Y, Cb, Cr

CCVS
Description:
The components contain:
- Y: a 5 step staircase 0 IRE to 100 IRE
- Cb, Cr: a 5 step staircase -50 IRE to +50 IRE
This signal is not valid with composite format.

Applications:
Line time nonlinearity measurement for all three components with spike filters on rising staircases.

Ln = Cn

LINEARITY 15
STAIRCASE - Y, Cb, Cr

CCVS
Description:
The components contain:
- Y: a 5 step staircase 0 IRE to 100 IRE
- Cb, Cr: a 5 step staircase +50 IRE to -50 IRE
This signal is not valid with composite format.

Applications:
Line time nonlinearity measurement for all three components with spike filters on rising (Y) and falling (Cb, Cr) staircases.

Ln = Cn
LINEARITY 16
TRIANGLE 1 Y, Cb, Cr

CCVS
Description:
The components contain:
Y a triangular voltage in the active lines going from 0 IRE at the beginning to 100 IRE in the middle of the line to 0 IRE at the end of the line.
Cb, Cr a triangular voltage in the active lines going from - 50 IRE at the beginning of the line to + 50 IRE in the center of the line to - 50 IRE at the end of the line.

Applications:
- line time nonlinearity with both signal polarities in one line
- rapid test on A/D converters for linearity deviations and missing codes with rising and falling ramps in all three components

Cb = Cr

LINEARITY 17
TRIANGLE 2 Y, Cb, Cr

CCVS
Description:
Like LINEARITY 16, but the polarity of Cb and Cr is inverted.

Applications:
See LINEARITY 16

Cb = Cr
LINEARITY 18

CCVS NONLINEARITY TEST

Description:
Ramp signals in Y, Cb and Cr which in RGB mode give ramps with maximum level (0 to 100 IRE) and different gradients. The NONLINEARITY TEST is generated to the IBA Code of Practice, 1987. This a valid composite signal.

Applications:
Testing nonlinearities in Y,Cb, Cr and for the most part with RGB using suitable spike filters (Code of Practice, Section 7, Ref. 7.50).
7. Signal Group MONITOR ADJUSTMENT

7.1 List of Signals

<table>
<thead>
<tr>
<th>MONITOR ADJUSTMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TEST PATTERN UNIVERSAL</td>
<td>18 MAGENTA FIELD</td>
</tr>
<tr>
<td>2 SMPT E BARS</td>
<td>19 RED FIELD</td>
</tr>
<tr>
<td>3 MONITOR SETUP PATTERN</td>
<td>20 BLUE FIELD</td>
</tr>
<tr>
<td>4 SYSTEM TEST PATTERN</td>
<td>21 BLACK</td>
</tr>
<tr>
<td>5 CROSS HATCH</td>
<td>22 GREY 50 IRE</td>
</tr>
<tr>
<td>6 CROSS HATCH CIRCLE</td>
<td>23 COLOUR BARS 77/7.5/77/7.5</td>
</tr>
<tr>
<td>7 CROSS HATCH DOTS</td>
<td>24 SPLIT FIELD</td>
</tr>
<tr>
<td>8 WINDOW PLUGE</td>
<td>25 ICE HOCKEY</td>
</tr>
<tr>
<td>9 CROSS HATCH WINDOW 1</td>
<td>26 YELLOW RED YELLOW</td>
</tr>
<tr>
<td>10 CROSS HATCH WINDOW 2</td>
<td>27 MOVING CROSS HATCH 1</td>
</tr>
<tr>
<td>11 CROSS HATCH WINDOW 3</td>
<td>28 MOVING CROSS HATCH 2</td>
</tr>
<tr>
<td>12 CROSS HATCH WINDOW 4</td>
<td>29 CROSS HATCH 16 : 9</td>
</tr>
<tr>
<td>13 SPOT</td>
<td>30 CROSS HATCH DOTS 16 : 9</td>
</tr>
<tr>
<td>14 WHITE 100 IRE</td>
<td>31 CROSS HATCH CIRCLE 16 : 9</td>
</tr>
<tr>
<td>15 YELLOW FIELD</td>
<td>32 TEST PATTERN UNIVERSAL 16 : 9</td>
</tr>
<tr>
<td>16 CYAN FIELD</td>
<td></td>
</tr>
<tr>
<td>17 GREEN FIELD</td>
<td></td>
</tr>
</tbody>
</table>

7.2 Signal Description

TEST PATTERN UNIVERSAL 4 : 3

Applications:

This test pattern is internationally used for testing TV receivers. It comprises a number of signal elements which permit virtually all distortions (e.g. of a receiver) to be seen at a glance.

<table>
<thead>
<tr>
<th>No.</th>
<th>Designation</th>
<th>Aspect checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>border</td>
<td>picture size, deflection, effect of blanking, synchronization</td>
</tr>
<tr>
<td>2</td>
<td>cross hatch, circle</td>
<td>convergence, linearity, beam deflection, focussing, geometrical distortion</td>
</tr>
<tr>
<td>3a</td>
<td>B-Y = 0, ϕ_{sc} = 270°</td>
<td>colour decoding</td>
</tr>
<tr>
<td>3b</td>
<td>B-Y = 0, ϕ_{sc} = 90°</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>G-Y = 0, ϕ_{sc} = 326°</td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>G-Y = 0, ϕ_{sc} = 146°</td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>R-Y = 0, ϕ_{sc} = 180°</td>
<td></td>
</tr>
<tr>
<td>3f</td>
<td>R-Y = 0, ϕ_{sc} = 0°</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>black window (7.5 IRE) + plug (if no text is inserted)</td>
<td>streaking, rounding, brightness adjustment of monitors</td>
</tr>
<tr>
<td>5</td>
<td>white window with negative going 2T pulse</td>
<td>reflection</td>
</tr>
<tr>
<td>6</td>
<td>250 KHz squarewave (77IRE)</td>
<td>overshoot</td>
</tr>
<tr>
<td>7</td>
<td>colour bars (77/7.5/77/7.5)</td>
<td>colour characteristics</td>
</tr>
<tr>
<td>8</td>
<td>centre marker</td>
<td>picture centring</td>
</tr>
<tr>
<td>9</td>
<td>multiburst</td>
<td>resolution</td>
</tr>
<tr>
<td>10</td>
<td>5 step grey scale</td>
<td>linearity, brightness and contrast</td>
</tr>
<tr>
<td>11</td>
<td>black window (7.5 IRE) with positive going 2T pulse (if no text is inserted)</td>
<td>reflection</td>
</tr>
<tr>
<td>12</td>
<td>yellow red yellow</td>
<td>chrominance / luminance delay differences</td>
</tr>
</tbody>
</table>
MONITOR ADJUSTMENT 2

SMPTE BARS

Description:

![Color Bars Diagram]

- **Colour bars**
- **Reverse blue bars**
- **IWQB plus pluge**

Applications:

The "reverse blue bar" is arranged such below the regular color bars that the blue channel is at full amplitude in both signals at the same time. For correct adjustment of the color reproduction on a monitor, the red and green channels are disabled and the monitor is set such that the two bars cyan/magenta and magenta/cyan appear with the same brightness. The lower part of the signal contains a white pulse and a black signal with ± 4 IRE steps (pluge) for adjusting the monitor brightness and contrast as well as the color reference signals - I and + Q for adjusting the correct phase relationship with the aid of a vectorscope.

MONITOR ADJUSTMENT 3

MONITOR SETUP PATTERN

Description:

The signal comprises the same components as the SMPTE bars signal. The individual components alternate with the cross hatch pattern, thus yielding a signal combination for complete monitor adjustment.

![Monitor Setup Pattern Diagram]

Applications:

See SMPTE BARS, MONITOR ADJUSTMENT 2
MONITOR ADJUSTMENT 4
SYSTEM TEST PATTERN

CCVS Description:
In the upper half of the picture, colour bars are displayed in the first half and the multiburst in the second half line. The lower half of the picture comprises the FCC COMPOSITE signal.

CCVS Applications:
The SYSTEM TEST PATTERN includes all essential signal elements for measuring linear and nonlinear distortion.

Y Cb Cr

MONITOR ADJUSTMENT 5
CROSS HATCH

Description:
The signal comprises 18 vertical lines with a 2.77 µs spacing plus 14 horizontal lines. The vertical lines are produced by 2T pulses at 100 IRE amplitude whereas the horizontal lines are all white lines at 100 IRE amplitude.

Applications:
This signal permits convergence errors and geometrical distortion of TV receivers and monitors to be assessed. In case of convergence errors, the lines are no longer white but run into the three primary colours RGB. If geometrical distortion is present, the squares do not have the same size over the whole screen and are not quadratic.

MONITOR ADJUSTMENT 6
CROSS HATCH CIRCLE

Description:
The signal comprises 18 vertical lines with a 2.77 µs spacing plus 14 horizontal lines. The vertical lines are produced by 2T pulses at 100 IRE amplitude whereas the horizontal lines are all white lines at 100 IRE amplitude. Centered to the middle of the cross hatch a circle is overlayed at 100 IRE white.
Applications:
This signal permits convergence errors and geometrical distortion of TV receivers and monitors to be assessed. In case of convergence errors, the lines are no longer white but run into the three primary colours RGB. If geometrical distortion is present, the squares do not have the same size over the whole screen and are not quadratic. Also the circle is a precise indicator for geometrical distortion.

MONITOR ADJUSTMENT 7
CROSS HATCH DOTS

Description:
The signal comprises 18 vertical lines with a 2.77 μs spacing plus 14 horizontal lines. The vertical lines are produced by 2T pulses at 100 IRE amplitude whereas the horizontal lines are all white lines at 100 IRE amplitude.
In the centre of the squares one 2T pulse per field is located.

Applications:
This signal permits convergence errors and geometrical distortion of TV receivers and monitors to be assessed. In case of convergence errors, the lines are no longer white but run into the three primary colours RGB. If geometrical distortion is present, the squares do not have the same size over the whole screen and are not quadratic.

MONITOR ADJUSTMENT 8
WINDOW PLUGE

Description:
The WINDOW + PLUGE signal comprises the following signal elements: The first vertical half of the full field signal includes a 2T pulse and a modulated 12.5T pulse with SC at $\phi = 0^\circ$ CCVS
The second vertical half of the full field signal includes in the upper and the lower part
a PLUGE signal of ± 4 IRE
and in the centre
a white window.
The signal elements are arranged on a black (0 IRE) background.

Applications:
Thanks to the integral window, field time tilts and line time tilts can be displayed. Reflections and echos are seen at the evaluation of the 2T pulse. The group delay and the amplitude response at the subcarrier is measured using the 12.5 T pulse.
The black alignment of monitors is done with the PLUGE signal. (PLUGE = Picture line up generator)
MONITOR ADJUSTMENT 9, 10, 11, 12
CROSS HATCH WINDOW 1, 2, 3, 4

Description:
In the centre of the screen there are white windows of various sizes surrounded by cross hatch pattern

Applications:
- beam current limiting for monitors
- linearity of the monitor deflection units at abrupt brightness transitions
- convergence settings

MONITOR ADJUSTMENT 13
SPOT

Description:
In the centre of the active picture there is a 100 IRE white spot with a duration of 3 µs and a height of 19 lines per field.

Applications:
Measurement of the beam current of a CRT.

MONITOR ADJUSTMENT 14
WHITE 100 IRE

Description:
This signal is a white bar with 100 IRE amplitude, which covers the whole active line.

Applications:
- testing clamping circuits at 100 IRE APL
- measuring noise voltage as a function of modulation
- testing the maximum beam current of CRTs
MONITOR ADJUSTMENT 15, 16, 17, 18, 19, 20

YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE

Description:
The colours of the 77/7.5/77/7.5 colour bars are generated individually as full field signals.

Applications:
Checking colour monitors for colour purity when a particular colour covers the whole screen.

MONITOR ADJUSTMENT 21
BLACK

CCVS
Description:
The BLACKBURST furnishes all sync pulses and bursts. The active line is at 7.5 IRE.

Applications:
This signal is used as genlock signal for external equipment (see also ITS 22) and for adjusting the black level at monitors.

MONITOR ADJUSTMENT 22
GREY 50 IRE

CCVS
Description:
Grey signal with luminance level of 50 IRE.

Applications:
- measuring the amplitude vs frequency response via externally loaded sweep signal
MONITOR ADJUSTMENT 23
COLOUR BARS 77/7.5/77/7.5

Description:
In accordance with RS - 189 - A the colour bars are produced with 77 IRE luminance amplitude and 77 IRE colour saturation at 7.5 IRE setup.

Applications:
The colour bars are the standard signal for checking and setting the phase and level of a CCVS and for a quick check of colour monitors. The colour coding in particular can be rapidly and simply checked with a vectorscope.

MONITOR ADJUSTMENT 24
SPLIT FIELD

Description:
The upper 2/3 of the screen shows the COLOUR BARS 77/7.5/77/7.5 the lower 1/3 is filled with the colour of the red bar.

Applications:
This signal is used as tape leader on VTR recording and also as substitution signal when the program signal fails.

MONITOR ADJUSTMENT 25
ICE HOCKEY

Description:
On a 100 IRE white screen there are two vertical red bars (same red as 77/7.5/77/7.5 colour bars) which are symmetrical about the centre.

Applications:
Measuring the group delay between luminance and chrominance on the screen.

MONITOR ADJUSTMENT 26
YELLOW RED YELLOW

Description:
In the middle of a yellow screen (same yellow as 77/7.5/77/7.5 colour bars) there is a vertical red bar (same red as 77/7.5/77/7.5 colour bars).

Applications:
Measuring the group delay between yellow (high Cb component), red (high Cr component) and the Y component.
MONITOR ADJUSTMENT 27, 28
MOVING CROSS HATCH 1, 2

Description:
The CROSS HATCH (MONITOR ADJ. 5) moves from bottom to top and from right to left.

Applications:
Determining the motion vectors for digital signal processing with data reduction.

MONITOR ADJUSTMENT 29
CROSS HATCH 16 : 9

Description:
The signal comprises 24 vertical lines with a 2.08 µs spacing plus 14 horizontal lines. The vertical lines are produced by 2T pulses at 100 IRE amplitude whereas the horizontal lines are all white lines at 100 IRE amplitude.

Applications:
This signal permits convergence errors and geometrical distortion of 16 : 9 TV receivers and monitors to be assessed. In case of convergence errors, the lines are no longer white but run into the three primary colours RGB. If geometrical distortion is present, the squares do not have the same size over the whole screen and are not quadratic.

MONITOR ADJUSTMENT 30
CROSS HATCH DOTS 16 : 9

Description:
The signal comprises 24 vertical lines with a 2.08 µs spacing plus 14 horizontal lines. This is composing an aspect ratio of 16 : 9. The vertical lines are produced by 2T pulses at 100 IRE amplitude whereas the horizontal lines are all white lines at 100 IRE amplitude. In the centre of square on 2T pulse per field is located.

Applications:
This signal permits convergence errors and geometrical distortion of 16 : 9 TV receivers and monitors to be assessed. In case of convergence errors, the lines are no longer white but run into the three primary colours RGB. If geometrical distortion is present, the squares do not have the same size over the whole screen and are not quadratic.
MONITOR ADJUSTMENT 31
CROSS HATCH CIRCLE 16 : 9

Description:
The signal comprises 24 vertical lines with a 2.08 µs spacing plus 14 horizontal lines. This is composing an aspect ratio of 16 : 9. The vertical lines are produced by 2T pulses at 100 IRE amplitude whereas the horizontal lines are all white lines at 100 IRE amplitude. Centered to the middle of the cross hatch a circle in 16 : 9 ratio is overlayed at 100 IRE white.

Applications:
This signal permits convergence errors and geometrical distortion of 16 : 9 TV receivers and monitors to be assessed. In case of convergence errors, the lines are no longer white but run into the three primary colours RGB. If geometrical distortion is present, the squares do not have the same size over the whole screen and are not quadratic. Also the circle is a precise 16 : 9 indicator for geometrical distortion.

MONITOR ADJUSTMENT 32
TEST PATTERN UNIVERSAL 16 : 9

Description:
See MONITOR ADJUSTMENT 1

Applications:
See MONITOR ADJUSTMENT 1, but for aspect ratio 16 : 9
8. Signal Group ZONE PLATE

8.1 List of Signals

<table>
<thead>
<tr>
<th>ZONE PLATE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H LINEAR</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V LINEAR</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIRCULAR</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPERBOLIC DIAGONAL</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPERBOLIC VERTICAL</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARIABLE ZONE PLATE</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2 Signal Description

ZONE PLATE 1
H LINEAR

The figures show the zone plates:
H LINEAR (ZONE PLATE 1),

CIRCULAR (ZONE PLATE 3),

HYPERBOLIC DIAGONAL (ZONE PLATE 4) and

HYPERBOLIC VERTICAL (ZONE PLATE 5)

through a 231 ns Thomson low pass filter. It is easy to see that all three signals provide the same information about the amplitude vs frequency response within one line.
The HYPERBOLIC VERTICAL zone plate however appears to be inaccessible to analysis in H frequent display on the oscilloscope. The HYPERBOLIC VERTICAL zone plate is similar to the V SWEEP and therefore to be measured in a V frequent display.

Description:
Signal like H SWEEP 5.5 MHz - 0 - 5.5 MHZ (ITS 8, 9, 10, 11) generated using the equation:
\[A(x,y,t) = \text{const.} + \sin (k_0 + k_x x + k_x^2 x^2 + k_y t + k_y^2 t^2) \]

Applications:
See Annex 2 ZONE PLATE SIGNALS.
Zone Plate 2

V Linear

Description:
Field repetitive signal which starts with a high vertical frequency at the top of the screen goes through a vertical frequency minimum at the centre of the screen and at the bottom of the screen again rises to a high vertical frequency.
This signal obeys the following equation:

\[A(x,y,t) = \text{const.} + \sin (k_0 + k_y y + k_{y^2} y^2 + k_1 t + k_{t^2} t^2) \]

Applications:
See Annex 2 ZONE PLATE SIGNALS.

Zone Plate 3, 4, 5, 6

Circular

Hyperbolic Diagonal

Vertical

Variable

Description / Applications:
See Annex 2 ZONE PLATE SIGNALS.
9. Signal Group CCIR 601 (Option)

9.1 List of Signals

<table>
<thead>
<tr>
<th>CCIR 601</th>
<th>PATHOL.SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GREY LEVEL</td>
<td>Y=088h C=100h</td>
</tr>
<tr>
<td>2 ALTERNATING BLACK/WHITE</td>
<td>Y=044h C=080h</td>
</tr>
<tr>
<td>3 EOL PULSE</td>
<td>Y=022h C=108h</td>
</tr>
<tr>
<td>4 BLACK/WHITE</td>
<td>Y=011h C=020h</td>
</tr>
<tr>
<td>5 RAMP YELLOW/GREY</td>
<td>Y=008h C=210h</td>
</tr>
<tr>
<td>6 RAMP GREY BLUE</td>
<td>Y=002h C=040h</td>
</tr>
<tr>
<td>7 RAMP CYAN GREY</td>
<td>Y=004h C=300h</td>
</tr>
<tr>
<td>8 RAMP GREY RED</td>
<td>Y=004h C=300h</td>
</tr>
<tr>
<td>9 RAMP CB Y CR Y</td>
<td>Y=006h C=0C0h</td>
</tr>
<tr>
<td>10 EOL BAR WHITE</td>
<td>Y=033h C=060h</td>
</tr>
<tr>
<td>11 EOL BAR BLUE</td>
<td>Y=019h C=230h</td>
</tr>
<tr>
<td>12 EOL BAR RED</td>
<td>Y=00Ch C=318h</td>
</tr>
<tr>
<td>13 EOL BAR YELLOW</td>
<td>Y=006h C=18Ch</td>
</tr>
<tr>
<td>14 EOL BAR CYAN</td>
<td>DIG.COL.BARS 100/0/100/0</td>
</tr>
<tr>
<td>15 SEQUENCE 1010</td>
<td>DIG.COL.BARS 100/0/75/0</td>
</tr>
<tr>
<td>16 SEQUENCE 11001100</td>
<td>RAMP Y</td>
</tr>
<tr>
<td>17 SEQUENCE 11100111000</td>
<td>RAMP Y CB CR</td>
</tr>
<tr>
<td>18 SDI CHECK FIELD</td>
<td>RAMP CB</td>
</tr>
<tr>
<td>19 PATHOL.SIGNAL Y=198h C=300h</td>
<td>RAMP CR</td>
</tr>
<tr>
<td>20 PATHOL.SIGNAL Y=110h C=200h</td>
<td>RAMP CR</td>
</tr>
</tbody>
</table>

When the CCIR 601 option is used all generator signals are output via the parallel and the serial (270 Mbit/s) data interface. These signals include all modifications which can be set from the "signal variation" panel on the instrument and which influence the Y, Cb and Cr components. Test sequences according to CCIR Rep. 1212, pathalogical signals for cable equalizers and PLLs used in the serial interface and special ramp signals listed above are also output in the analogue CCVS, Y Cb Cr and RGB formats.

9.2 Signal Description

See Annex 1: ITU-R BT. 801 Section 3. Examples of 4:2:2 test signals and
Annex 2: Pathological Signals