Testing HSPA+
Application Note

Products:

- R&S®SMU200A | R&S®FSW
- R&S®AMU200A | R&S®FSQ
- R&S®SMBV100A | R&S®FSV
- R&S®CMW500 | R&S®FSP
- R&S®TS8990 | R&S®FSG
- R&S®FSU

High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA) optimize UMTS for packet data services in the downlink and uplink, respectively. Together, they are referred to as High Speed Packet Access (HSPA). Within 3GPP Release 7, 8, 9 and 10, further improvements to HSPA have been specified in the context of HSPA+ or HSPA evolution.

This Application Note describes how HSPA+ features can be tested using Rohde & Schwarz instruments.
Table of Contents

1 Introduction .. 4

2 HSPA+ Signal Generation ... 6

2.1 Basic settings .. 6

2.1.1 Generation of an example HSPA+ downlink signal 6

2.1.2 Generation of a multi-carrier signal ... 7

2.2 HSPA+ in the SMU ... 13

2.3 3GPP Release 7 .. 14

2.3.1 64QAM (DL) signal generation .. 14

2.3.2 16QAM (UL) signal generation .. 15

2.3.3 MIMO operation ... 17

2.3.4 CPC ... 20

2.3.4.1 HS-SCCH less operation .. 20

2.3.4.2 UL-DTX ... 20

2.3.4.3 Uplink DPCCH slot format 4 ... 21

2.3.5 Enhanced fractional DPCH (F-DPCH) ... 21

2.3.6 HARQ feedback for uplink 16QAM ... 21

2.4 3GPP Release 8 .. 23

2.4.1 Combination of MIMO and 64 QAM ... 23

2.4.2 DC-HSDPA ... 23

2.5 3GPP Release 9 .. 25

2.5.1 DC-HSUPA ... 25

2.5.2 Dual band DC-HSDPA ... 25

2.5.3 Combination of DC-HSDPA and MIMO ... 25

2.5.4 TxAA extension for non-MIMO UEs ... 26

2.6 Release 10: Four-carrier HSDPA ... 26

3 HSPA+ signal analysis .. 27

3.1 64 QAM downlink and 16 QAM uplink analysis ... 28

3.2 MIMO analysis ... 30

3.2.1 Time alignment analysis ... 30

3.2.2 Single antenna measurement ... 32

4 HSPA+ with the CMW500 ... 34
The following abbreviations are used in this Application Note for Rohde & Schwarz test equipment:

- The R&S®SMU200A vector signal generator is referred to as the SMU.
- The R&S®SMATE200A vector signal generator is referred to as the SMATE.
- The R&S®SMJ100A vector signal generator is referred to as the SMJ.
- The R&S®SMBV100A vector signal generator is referred to as the SMBV.
- The R&S®AMU200A vector signal generator is referred to as the AMU.
- The R&S®SMU200A, R&S®SMATE, R&S®SMBV100A and R&S®SMJ100A vector signal generators are referred to as the SMx.
- The R&S®FSQ signal analyzer is referred to as the FSQ.
- The R&S®FSG signal analyzer is referred to as the FSG.
- The R&S®FSV spectrum analyzer is referred to as the FSV.
- The R&S®FSW spectrum analyzer is referred to as the FSW.
- The R&S®FSU spectrum analyzer is referred to as the FSU.
- The R&S®FSP spectrum analyzer is referred to as the FSP.
- The R&S®FSV FSQ, FSV, FSW, FSG, FSP and FSU are referred to as the FSx.
- The R&S®CMW500 radio communication tester is referred to as the CMW.
- The R&S®TS8980 RF Conformance Test System is referred to as the TS8980.
1 Introduction

UMTS High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA) networks worldwide are operated in order to increase data rate and capacity for downlink and uplink packet data. While HSDPA was introduced as a Release 5 feature in 3GPP (3rd Generation Partnership Project), HSUPA is an important feature of 3GPP Release 6. The combination of HSDPA and HSUPA is often referred to as HSPA (High Speed Packet Access).

However, even with the introduction of HSPA, evolution of UMTS has not reached its end. HSPA+ brings significant enhancements in 3GPP Release 7, 8, 9 and 10. The objective is to enhance performance of HSPA-based radio networks in terms of spectrum efficiency, peak data rate and latency, and to exploit the full potential of W-CDMA operation. Important features of HSPA+ are:

3GPP Release 7
- Downlink MIMO (Multiple Input Multiple Output)
- Higher order modulation for uplink (16QAM) and downlink (64QAM)
- Continuous packet connectivity (CPC)
- Enhanced fractional DPCH (F-DPCH)
- Improved layer 2 support for high downlink data rates
- Enhanced CELL_FACH state (downlink)

3GPP Release 8
- Combination of MIMO and 64QAM
- CS over HSPA
- Dual cell HSDPA (also called dual carrier HSDPA)
- Improved layer 2 support for high uplink data rates
- Enhanced CELL_FACH state (uplink)
- HS-DSCH DRX reception in CELL_FACH
- HSPA VoIP to W-CDMA/GSM CS continuity
- Serving cell change enhancements

3GPP Release 9
- Dual cell HSUPA (also called dual carrier HSUPA)
- Dual band HSDPA
- Dual cell HSDPA + MIMO
- 2ms TTI uplink range extensions
- TxAA extensions

3GPP Release 10
- Four-carrier HSDPA

This Application Note describes how to test these features using Rohde & Schwarz equipment. This includes the generation of test signals as well as signal analysis and signaling tests.

For detailed information about HSPA+ and its features, please read the Rohde & Schwarz White Paper "HSPA+ Technology Introduction" [1].
Fig. 1 shows how the individual HSPA+ features relate to one another.

Fig. 1 HSPA+ feature landscape.
2 HSPA+ Signal Generation

The HSPA+ features build upon the W-CDMA and HSPA settings in the SMx. This paper therefore first defines the basic settings for the SMU before providing descriptions of the individual HSPA+ features.

2.1 Basic settings

The first step on the SMU is to consider the desired carrier frequency for the RF signal, and then to select the "RF On" check box.

2.1.1 Generation of an example HSPA+ downlink signal

The SMx and AMU signal generators make it very easy to generate the signals needed for the various tests. Because HSPA and HSPA+ add high-speed data channels to conventional UMTS W-CDMA signals (in accordance with 3GPP Release 99), the signal generation is illustrated based on the example of an HSPA+ signal that consists of W-CDMA data channels, HSPA+ channels and control channels. This basic example is then followed by descriptions of the feature-specific settings.

First, "3GPP FDD" is selected in "Baseband A" to open the main menu, where all further settings can be made. The "Link Direction" parameter is set to "Downlink/Forward", after which the base station settings are defined in the lower portion of the dialog box. In this area, the synchronization and control channels can be enabled by selecting "Predefined Settings" followed by "Use Channels needed for Sync of Mobile (UE): P-CPICH, P-SCH, S-SCH, PCCPCH". The desired number of data channels for the W-CDMA signal (DPCHs) can also be defined here; in this example it is set to 2.

The base station is then configured by selecting "BS1". This opens a dialog box with the existing control channels and DPCHs prefilled in the Channel Table. The HSPA+ channels just have to be added.
This is done by selecting an empty row in the channel table (row 10 or greater; the preceding lines are reserved for control channels) and setting Channel Type HS-SCCH. This channel type is the HSDPA downlink control channel that is used to define the HSDPA data channels. "Enhanced/HSDPA Settings" is then selected in the HS-SCCH row to open a new dialog box (Fig. 3). By changing the "HSDPA Mode" field from "Continuous" to "H-Set", it is then possible to define the various settings for the HS-DSCH.

Selecting "H-Set Configuration > Predefined H-Set" opens a list of the predefined H-Sets in 3GPP TS 25.101 [5] that contain the settings for the various tests. By selecting the desired H-Set (in this example, H-Set 8), the appropriate data channels are added without requiring any additional configuration. However, it is also possible to define individual parameters to meet specific test requirements. The defined channels are now displayed in the channel table and simply have to be enabled.

If there are any overlapping channels in the code domain, the software displays this in the last column of the table and, if desired, can automatically adapt the spreading codes of the individual channels. This is done by clicking on one of the red indicators displayed on the screen, and then selecting "Resolve Domain Conflicts".

Clicking "State > On" then enables the baseband signal.

The total power of the individual W-CDMA channels should be 0 dB relative to the defined level. If the level is greater, clicking "Adjust Total Power to 0 dB" in the main menu normalizes (reduces) the power of all channels to the reference level of 0 dB.

2.1.2 Generation of a multi-carrier signal

There are three basic methods for generating signals with two different carrier frequencies:
- Using two RF paths and combining them in the RF range
- Overlaying the two individual signals in the baseband and using a single RF path
- Generating a waveform file and playing it back on multiple carrier frequencies

If two RF outputs are to be used, the desired carrier frequencies for the two RF signals can be set directly in the upper portion of the screen, and the baseband settings can then be made individually.

To use a single RF output on the generator, the center frequency must first be set for the two carrier frequencies. Once the specific settings have been made, a frequency offset must then be set in the "Baseband A" and "Baseband B" blocks. For most of the applications described here, the offset between the two carriers is 5 MHz (the distance between two adjacent W-CDMA channels). Accordingly, an offset of +5 MHz is set in baseband B, for example (or an offset of ±2.5 MHz can be set in each of the two basebands).

```
Fig. 4 Setting the frequency offset.
```

The two baseband signals are then combined. This is done by clicking the "Baseband B" block and selecting "route to path A". Fig. 5 shows the resulting changes on the user interface.
In both cases, the trigger settings must be adjusted so that the baseband signals are synchronized. In baseband A, this is done by selecting "Trigger/Marker" and then "Mode > Auto". In baseband B, on the other hand, "Mode" is set to "Armed Retrigger" and "Source" is set to "Internal (Baseband A)".

After the changes have been made in baseband B, the signal is restarted in baseband A by setting the baseband state to "Off" and then back to "On". This will synchronize the two basebands.

The signal can also be generated by using two signal generators, each with one baseband and one RF output. In this case, the same basic settings are made in both instruments, which are then synchronized using a common reference and a single trigger for the baseband. This is done by connecting a BNC cable from the "Ref Out" output on the first instrument to the "Ref In" input on the second instrument, and by connecting the "Marker 1" output on the first instrument to the "Trigger 1" input on the second instrument.
To synchronize the basebands, Marker 1 is defined as "Chip Sequence Period (ARB)" in the trigger settings for baseband 1 (in the first instrument); see Fig. 8. In baseband 2, on the other hand, Mode is defined as "Armed Retrigger" and Source is defined as the external trigger originating from baseband 1; see Fig. 9. For some tests also both basebands have to be synchronized on one external trigger. The "Clock" settings in the second instrument must also be defined with "Source > External" to ensure that the two instruments remain synchronous.
Some signals consist of up to four individual components (for example, 4C-HSDPA). To generate these signals, either two dual-path instruments (two SMUs) or four single-path instruments (e.g. four SMBVs) are interconnected using the above configuration.

The third option of generating a signal consisting of multiple carrier frequencies makes use of the signal generator's multicarrier functionality and can be performed using one single-path instrument.

In this case, the desired signal is set in the baseband and then saved by clicking on "Generate Waveform File", after which it can be played back at the various frequencies. For this the ARB function is selected in the baseband block, as shown in Fig. 10

![Fig. 10 ARB functionality on the signal generator.](image)

In the dialog box that appears, click "Multi Carrier" to open a further dialog box for generating a multicarrier signal, as shown in Fig. 11.

![Fig. 11 ARB multicarrier functionality.](image)
Settings such as the number of carrier frequencies and their offset to one another can be made here. Clicking the "Carrier Table" button opens the "Multi Carrier Table" dialog box as shown in Fig. 12 for making the individual carrier settings.

The table at the bottom of this dialog box provides an overview of the current settings for the individual carriers. This can be modified by clicking a specific table entry, or the "Carrier Table Assistant" can be used to modify several carriers at once. In this case, the indices of the first and last carrier to be modified are entered and the desired settings are defined. The "Input Waveform File" button can be used to load the previously generated ARB file. Once all settings are defined, clicking "Apply Assistant Settings" updates the corresponding entries in the table with the new settings.

Once the "Multi Carrier Table" is closed, the "Output Settings" section of the "Multi Carrier" dialog box can be used to define where the multicarrier signal being generated is to be saved. Finally, "Create" or "Create and Load" is clicked to generate the signal. The signal can then be loaded and started in the ARB dialog box.

Please note the following restrictions for both of the methods mentioned above, which use the combination of the signals in the baseband:

- The total bandwidth of the sum signal must not exceed the maximum base bandwidth of the instrument being used. This is 80 MHz for the SMU and 120 MHz for the SMBV, for example.
- The levels of the individual carriers should be as close to one another as possible, since otherwise a signal with low power would be lost in the quantizing noise.
- It will no longer be possible to fade the individual signals independently from one another, as required by 3GPP TS 25.101 [5], for example.
2.2 HSPA+ in the SMU

The SMU-K59 option for the SMU, SMATE, SMJ, SMBV and AMU signal generator allows the internal generation of standard-compliant HSPA+ signals as well as the generation of multicarrier and multisegment signals in line with 3GPP Releases 7 to 10.

Additionally, WinIQSIM2™ software provides a convenient way of creating any standard-compliant waveform with all the included standards using the arbitrary waveform generators functionality. WinIQSIM2™ HSPA+ support is realized using software option K259 on the respective signal generator.

The supported features include correct MIMO coding, new HSPA+-specific channel parameters as well as channel coding (H-Sets). This enables the test engineer to thoroughly investigate the performance of HSPA+ receivers, no matter whether the physical layer tests are to be performed at the component level (power amplifiers, filters, etc.) or on complete receivers in base stations or mobile phones. Signals for demanding diversity and MIMO tests are intuitively generated. The K59/K259 options support HSPA+ downlink and uplink signal generation.

Table 1: Overview of W-CDMA/HSPA+ options in SMx

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>K42</td>
<td>Digital Standard 3GPP FDD</td>
<td></td>
</tr>
<tr>
<td>K43</td>
<td>3GPP FDD Enhanced MS/BS Tests, incl. HSDPA</td>
<td>Needs K42</td>
</tr>
<tr>
<td>K45</td>
<td>Digital Standard 3GPP FDD HSUPA</td>
<td>Needs K42</td>
</tr>
<tr>
<td>K59</td>
<td>Digital Standard HSPA+</td>
<td>Needs K43 and/or K45</td>
</tr>
</tbody>
</table>

Fig. 13 and Fig. 14 show the basic test setups for receiver tests on user equipment (downlink) and base transceiver stations (uplink).

Fig. 13 Basic downlink test setup.
2.3 3GPP Release 7

2.3.1 64QAM (DL) signal generation

In order to support 64QAM testing [5][10], a fixed reference channel has been introduced. H-Set 8 is specified as the reference test channel for HSPA+ test cases. The H-Set 8 parameterization and coding chain is based on 15 codes with 64QAM modulation. Six hybrid ARQ processes are used, and HS-DSCH is continuously transmitted. Fig. 15 illustrates the possibility to select 64QAM downlink signals in the SMU channel type setting. K59 additionally supports the orthogonal channel noise (OCNS) mode.

Note that user-defined H-Set configuration is possible, i.e. either H-Set 8 can be used or individual parameter settings may be configured, effectively creating a user-defined H-Set.

The SMx/AMU also supports Test Model 6 in accordance with 3GPP TS 25.141 [2]. Test Model 6 defines a certain number of channels (including 8 HS-PDSCH using 64QAM) at specified power levels, which is used to test code domain error requirements of a base station components supporting 64QAM modulation in the downlink.
2.3.2 16QAM (UL) signal generation

In order to support 16QAM testing (4PAM modulation on I and Q), a fixed reference channel has been introduced [2][6]. FRC8 is specified as the reference test channel for HSUPA test cases at the base station receiver. Fig. 16 shows the signal generator user interface providing the 16QAM signal by four E-DPDCH codes, two of which use spreading factor 2 and two of which use spreading factor 4 in accordance with 3GPP specifications.

Again, it is possible to set individual parameters according to the specific testing needs.
A fixed reference channel is selected by clicking "HSUPA FRC" in the "E-DPCCH Settings" section. This opens a new dialog box (see Fig. 17), where it is possible to set either one of the FRCS defined in [2] or a user-defined reference channel. Clicking "On" enables the FRC and adapts the E-DPCCH and E-DPDCH channels accordingly.
2.3.3 MIMO operation

In order to support MIMO operation, changes to the HSDPA downlink control channel have become necessary, i.e. the HS-SCCH. There is a new HS-SCCH Type 3 for MIMO operation (see Fig. 18). HS-SCCH Type 3 includes signaling of precoding weights as specified by 3GPP [11]. H-Set 9 is specified as the reference test channel for HSPA+ test cases [5][10]. The H-Set 9 parameterization and coding chain is based on 15 codes with two different modulations, 16QAM and QPSK, for primary and secondary transport blocks, respectively. Six HARQ processes per stream are used, and HS-DSCH is continuously transmitted. Again, a user-defined H-Set configuration is possible.

As of 3GPP Release 7, MIMO offers dynamic switching between dual stream and single stream data transmission. Single stream effectively represents a fallback solution to Tx diversity mode in those cases where propagation conditions do not allow MIMO transmission. The “Stream 2 Active Pattern” parameter allows the generation of a user-defined sequence for single and dual stream transmission.
To generate this type of signal, MIMO mode is first selected for both basebands in the basestation settings, as shown in Fig. 19. At the same time, baseband A is set as "Antenna 1 Of 2" and baseband B as "Antenna 2 Of 2" (or vice versa).
The same settings must be made for both basebands. The "Save/Recall" function makes it easy: Simply configure baseband A and then use Save/Recall to save the settings to the instrument. Then it is simply a matter of selecting baseband B and using the Save/Recall button again to apply the saved settings. Finally, in the BS1 settings for baseband B, "Diversity/MIMO" should be set to "Antenna 2 Of 2". Note that the second antenna transmits only the P-CPICH (with "P-CPICH Pattern" for antenna 2) or S-CPICH and the selected HS-PDSCHs.

The two basebands must also be synchronized as described in 2.1.2.

The SMU signal generator can be equipped with two signal generators and a four-channel fading simulator. This would require adding hardware options B14 and B15 as well as software option K74, which allows testing of 2x2 MIMO receivers using one box. With this solution, you operate the entire functionality from one convenient user interface, without having to calibrate or synchronize your setup. The fading simulator makes it possible, for example, to simulate the extended ITU fading profiles [12] with correlation between the channels. The same fading and baseband functionality is available with the AMU baseband signal generator and fading simulator. Fig. 20 illustrates the user interface operating a HSPA+ 2x2 MIMO signal, including multipath fading.

Fig. 20 SMU user interface generating a 2x2 MIMO signal, including multipath fading.
2.3.4 CPC

2.3.4.1 HS-SCCH less operation

CPC functionality has been added that specifically supports the HS-SCCH less operation mode, i.e. physical channel settings in HS-SCCH and HS-DPSCH for “HS-SCCH-less operation” (incl. HS-SCCH Type 2) can be selected. H-Set 7 is specified as the reference test channel for HSDPA+ test cases [5][10]. H-Set 7 consists of one HSPDSCH, and its parameterization and coding chain is based on one code with QPSK modulation and one HARQ process. A user-defined H-Set configuration is also possible for HS-SCCH less operation.

2.3.4.2 UL-DTX

UL-DTX (i.e. the non-continuous transmission of the uplink DPCCH in cases where the uplink data transmission is missing) can be configured under “UE1 > UL-DTX”, however “DPCCH+DPDCH” mode must first be enabled for UE1.

![UL-DTX settings](image)

Fig. 21 Uplink DTX settings.

This dialog box provides the settings necessary to configure the start offset, the threshold time for switching to UE-DTX cycle 2 and the DPCCH activity patterns for both UE-DTX cycle 1 and 2. It is possible to determine the frequency of the DPCCH bursts and the length of the DPCCH bursts (without pre- and postamble), and to configure the length of the longer preamble for the UE-DTX cycle 2.
2.3.4.3 Uplink DPCCH slot format 4

As shown in Fig. 22, K-59 supports the new slot format 4 for the uplink DPCCH. It contains only six pilot bits and four TPC (Transmit Power Control) bits in order to reduce DPCCH transmit power. FBI (Feedback Information) and TFCI (Transport Format Combination Indicator) bits are not sent.

![Fig. 22 Support for the uplink slot format 4.](image)

2.3.5 Enhanced fractional DPCH (F-DPCH)

As seen in Fig. 23, various slot formats can be selected for the F-DPCH. These differ with respect to the position of the TPC information within the respective slot, as defined in [5].

![Fig. 23 Setting the F-DPCH.](image)

2.3.6 HARQ feedback for uplink 16QAM

Hybrid Automatic Repeat Request is a mechanism to allow the receiver (NodeB) to request that packets be resent by the sender (UE) if these packets could not be received error free in the first place. Incorrectly received coded data blocks may be stored at the receiver, and the two blocks may be combined when the retransmitted block is received. While two independently decoded transmissions might not decode without errors, it is possible that combining the erroneously received transmissions will provide enough information to decode them correctly.
To test this complex mechanism at the device under test (NodeB), the Rohde & Schwarz SMU, SMJ, SMATE and AMU signal generators offer a TTL input connector that allows the receiver feedback to be taken into account as illustrated in Fig. 24. Based on the received feedback, the generator decides in real time to transmit new data or to retransmit the last packet.

Please note that HARQ feedback is not supported by SMBV and WinIQSIM2.

The HARQ feedback settings can be made in the "UE1 > E-DPCH Settings > HSUPA FRC" dialog box, as shown in Fig. 25.
2.4 3GPP Release 8

2.4.1 Combination of MIMO and 64 QAM

As described in 2.3.3, the individual parameters for the two MIMO streams can be selected by the user, which makes it possible to generate the combination of MIMO and 64QAM (H-Set 11). As a result, the modulation schema can be set separately for the two streams. Note that the modulation schema on the second stream must never be a higher order than what is used on the first stream.

Fig. 26 shows how the parameter settings can be made separately for the two streams.

<table>
<thead>
<tr>
<th>Coding Configuration</th>
<th>Stream 1: 64QAM</th>
<th>Stream 2: 64QAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-PDSCH Modulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Channel Bits Per TTI (Physical Layer)</td>
<td>43 200</td>
<td>43 200</td>
</tr>
<tr>
<td>Transport Block Size Table</td>
<td>Table 1</td>
<td>Table 1</td>
</tr>
<tr>
<td>Transport Block Size Index</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>Information Bit Payload (TB Size)</td>
<td>26 594</td>
<td>26 576</td>
</tr>
<tr>
<td>Coding Rate</td>
<td>8.014</td>
<td>8.624</td>
</tr>
<tr>
<td>Virtual IR Buffer Size (per HARQ Process)</td>
<td>43 200</td>
<td>43 200</td>
</tr>
</tbody>
</table>

Fig. 26 SMU support for 64QAM in both MIMO streams.

2.4.2 DC-HSDPA

DC-HSDPA (Dual Cell HSDPA, or Dual Carrier HSDPA) represents the simultaneous transmission on two carrier frequencies (the serving cell and the secondary serving cell). This requires the generation of two different baseband signals, which are then combined as described in 2.1.2.

In order to support DC-HSDPA testing, a fixed reference channel has been introduced. H-Set 12 is specified as the reference test channel for HSPA+ test cases [5][10]. The H-Set 12 parameterization and coding chain is based on 1 code with QPSK modulation. Six hybrid ARQ processes are used, and HS-DSCH is continuously transmitted.

The new H-Sets 1A, 3A, 6A, 10A and 12A have also been introduced, which expand the single cell signals for DC-HSDPA applications.

As before, the parameters can either be defined individually, or a predefined H-Set can be used. The P-CPICH, P-CCPCH, P-SCH, S-SCH and PICH channels must also be enabled. After this is completed for baseband A, the settings are saved and then applied to baseband B using the "Save/Recall" function. On baseband B, channels P-CCPCH, P-SCH, S-SCH and PICH are disabled because they are transmitted only in the serving cell.
The signal can then be output on two RF channels, or combined and output in the baseband (see Section 2.1.2).

DC-HSDPA brings changes to the uplink signal as well, because the HS-DPCCH must now transmit CQI information and ACK/NACK for both carrier frequencies. For base station tests, the uplink signal is enabled in the "HS-DPCCH Settings" section (see Fig. 27). Note that "Release 8 and Later" must be set under "Compatibility Mode" and "Secondary Cell Active" must be selected. This makes it possible to set whichever HARQ responses are needed from the UE.

The "HARQ-ACK" parameter can be set for a TTI, where "A/N" feedback refers to the transmission of an ACK to the serving cell and transmission of a NACK to the secondary serving cell. It is also possible to add any needed CQI and PCI feedback and their timing to the respective TTIs. The number of table entries is set above the table, in the "Number of Table Rows" field. Clicking "Adjust ARB Sequence Length" adjusts the length of the generated ARB sequence to match the (recommended) length that is calculated from the parameters "Inter TTI Distance (Interval)", "HARQ-ACK Repeat After" and "PCI/CQI Repeat After".

![Fig. 27 HS-DPCCH settings.](image)

For additional information regarding signal generation for DC-HSDPA, refer to the Application Sheets [3] and [4].
2.5 3GPP Release 9

2.5.1 DC-HSUPA

DC-HSUPA requires DC-HSPDA in the downlink, and therefore uses the same principle for the uplink data channels. Therefore, two different signals are set in the baseband in the same way as described in 2.4.2.

Once "Uplink/Reverse" has been selected as the link direction in baseband A, the dialog box for UE1 can be opened; see Fig. 16. This dialog box is used to make the settings for the E-DPCCH and the E-DPDCH, as described in 2.3.2.

"Save/Recall" is then used to copy the settings to the second baseband. In this case, the HS-DPCCH must be disabled again, because feedback for DC-HSDPA is transmitted only in the serving cell (both downlink streams are confirmed simultaneously).

The signal can then be output on two RF channels, or combined and output in the baseband (see Section 2.1.2).

2.5.2 Dual band DC-HSDPA

Dual band DC-HSDPA follows the same principle as DC-HSDPA, except that the two signals are not transmitted on carrier frequencies inside the same band. Instead, the carrier frequencies lie in different frequency bands. Only specific combinations are permitted for this, as described in 3GPP TS 25.101 [5].

To generate this type of signal, it is sufficient to follow the steps described in 2.4.2 and then to modify the carrier frequencies accordingly. The large distance between the frequency bands and the limited modulation bandwidth of the instruments (80 MHz for SMU and 120 MHz for SMBV) make it impossible to combine the two signals in the baseband. The two signals must be mixed separately on the respective carrier frequencies, and thus must also use two separate RF outputs.

2.5.3 Combination of DC-HSDPA and MIMO

When combining DC-HSDPA and MIMO, a total of four different baseband signals must be generated in the downlink. This is done by using two signal generators, each with two basebands. The two instruments are synchronized externally, and their RF outputs are connected; see 2.1.2.

For uplink tests, it is sufficient to generate a single baseband signal. "MIMO Mode" can be enabled in the uplink signal for DC-HSDPA (see Fig. 28), which allows up to four transport blocks to be confirmed simultaneously in the HS-DPCCH.
2.5.4 TxAA extension for non-MIMO UEs

This feature allows the MIMO schema described in 2.3.3 to be used for UEs with only one antenna. As a result, the settings described above can be used here for downlink tests. The "Stream 2 Active Pattern" parameter (see Fig. 19) must be set to "-", which specifies that only the first stream will ever be sent.

2.6 Release 10: Four-carrier HSDPA

Four-carrier HSDPA follows the same principle as DC-HSDPA (see 2.4.2), except that up to three secondary serving cells are used in addition to the serving cell. In cases where the individual carriers lie too far apart or need to be independently faded, or where the power differences between the individual signals are too great, either two signal generators, each with two basebands, or four single-path generators to generate the various signals are required.
3 HSPA+ signal analysis

This chapter illustrates how to add HSPA+ measurement functions to the FSU, FSQ, FSG, FSP, FSV and FSW analyzer families in line with the 3GPP specifications for FDD mode. Measurements can be performed on (sub-)systems as well as on individual components – such as amplifiers – that may have to meet more stringent requirements. All measurements can be remotely controlled. The results and demodulated data bits can be transferred via Ethernet LAN (100 Mbps) or via the IEEE bus – an ideal solution in production.

The FS-K72 application firmware provides the basic functionality needed for W-CDMA base station testing. This firmware can be extended to encompass HSPA (high speed packet access) for base station testing using FS-K74, and also to encompass user equipment testing using FS-K73.

Rohde & Schwarz offers a dedicated firmware option to analyze HSPA+ signals for the FSU, FSQ, FSG and FSP. The options FS-K74+ and FS-K73+ offer 64QAM downlink analysis and 16QAM uplink analysis, respectively. This includes automatic detection of signals, including the relative code domain error measurement. FS-K74+ and FS-K73+ run on top of the existing options for W-CDMA, HSDPA and HSUPA signal analysis.

For the FSV, the FSV-K72 (BTS measurements, DL) and FSV-K73 (UE measurements, UL) application firmware already includes HSPA+ analysis possibilities.

For the FSW, the FSW-K72 (BTS measurements, DL) and FSW-K73 (UE measurements, UL) application firmware already includes HSPA+ analysis possibilities.

For both FSV and FSW, the additional FS-K74+ and/or FS-K73+ option are not required.

Overview of FSx options for WCDMA/HSPA+

<table>
<thead>
<tr>
<th>FSx</th>
<th>3GPP applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSW-K72</td>
<td>3GPP (W-CDMA) BS (DL) Analysis, incl. HSDPA and HSPA+</td>
</tr>
<tr>
<td>FSW-K73</td>
<td>3GPP (WCDMA) UE (UL) Analysis, incl. HSUPA and HSUPA+</td>
</tr>
<tr>
<td>FSV-K72</td>
<td>3GPP BS (DL) Analysis, incl. HSDPA and HSDPA+</td>
</tr>
<tr>
<td>FSV-K73</td>
<td>3GPP UE (UL) Analysis, incl. HSUPA</td>
</tr>
<tr>
<td>FS-K72</td>
<td>3GPP BTS/Node B FDD Application Firmware</td>
</tr>
<tr>
<td>FS-K73</td>
<td>3GPP UE FDD Application Firmware</td>
</tr>
<tr>
<td>FS-K73+</td>
<td>3GPP HSPA+ UE Application Firmware</td>
</tr>
<tr>
<td>FS-K74</td>
<td>3GPP HSDPA BTS Application Firmware</td>
</tr>
<tr>
<td>FS-K74+</td>
<td>3GPP HSPA+ BTS Application Firmware</td>
</tr>
</tbody>
</table>

Table 2: Overview of FSx options for W-CDMA/HSPA+
Fig. 29 and Fig. 30 show the basic test setups for base stations and user equipment.

![BTS (DUT) TX](image)

Fig. 29 Basic test setup for base station TX.

![UE (DUT) TX](image)

Fig. 30 Basic test setup for user equipment TX.

General RF measurements, including channel power, ACLR, occupied bandwidth or spurious emissions can be performed independently of the options listed above.

3.1 64 QAM downlink and 16 QAM uplink analysis

Fig. 31 provides an example measurement for a code domain power measurement on a 64QAM downlink signal with 16 active channels. Active and inactive channels are marked in different colors. Inactive channels (noise, interference) are displayed with the highest spreading factor.

The channel table (see Fig. 32, right side) lists all channels detected in the signal and their most significant parameters.

Note that the primary scrambling code being used must be set for all measurements so that the signal can be correctly identified. The Autosearch function ("Code Domain Analyzer > Scrambling Code > Autosearch") permits automated detection.

The summary table (see Fig. 32, left side) shows the main parameters for the total signal at a glance (e.g. total power, frequency error and error of chip rate), as well as the parameters for the marked code channel, such as modulation type (64QAM), timing offset, code power and average relative code domain error. Three different measurements are stipulated in the 3GPP specifications for determining the modulation quality:
- EVM (error vector magnitude)
- Peak code domain error
- Average relative code domain error

The code domain power measurement offers an in-depth analysis for a W-CDMA signal with several active channels. The composite EVM measurement returns a modulation error value for the total signal, whereas the symbol EVM function yields the individual vector errors of the active channels.

To obtain the peak code domain error (PCDE), the vector error between the measured signal and the ideal reference signal is determined and projected to the codes of a specific spreading factor. With FS-K72, the spreading factor for the PCDE measurement can be selected by the user.

FS-K74+/K73+, FSV-K72/K73 and FSW-K72/K73 provide relative code domain error (RCDE) measurements, i.e. they determine the ratio of the mean power of the error vector projection onto a selectable code to the code’s mean power in the composite reference waveform.

The average RCDE is calculated over all 64QAM-modulated channels, and per 3GPP TS 25.104 [6], it must not exceed -21 dB.

![Fig. 31 Code domain power measurement of a 64QAM signal and its constellation diagram.](image)
3.2 MIMO analysis

3.2.1 Time alignment analysis

One important requirement for the NodeB transmitting HSPA+ MIMO signals is to achieve a specified time synchronicity of the MIMO signal via the two transmit antennas.
In 3GPP TS 25.104 [6] for downlink MIMO, the specification text reads:

\textit{In Tx Diversity and MIMO transmission, signals are transmitted from two antennas. These signals shall be aligned. The time alignment error in Tx Diversity and MIMO transmission is specified as the delay between the signals from the two diversity antennas at the antenna ports. The time alignment error in Tx Diversity or MIMO transmission shall not exceed } \frac{1}{4} T_c.

As a result, the absolute requirement is approximately 65 \mu s, which can easily be measured with an FSU, FSQ, FSG or FSP using the HSPA+ software options FS-K72 or the FSW-K72, as illustrated in Fig. 34 and Fig. 35.

Fig. 34 Time alignment error measurement of a MIMO signal.

![Fig. 34 Time alignment error measurement of a MIMO signal.](image1)

Fig. 35 Time alignment error measurement of a MIMO signal with the FSW.

![Fig. 35 Time alignment error measurement of a MIMO signal with the FSW.](image2)

Fig. 35 also shows the setting that measures the pilot signals used for both antennas.

When DC-HSDPA and MIMO are combined, this measurement is performed separately for each of the two carrier frequencies, as shown in Fig. 36. 3GPP TS 25.104 [6] specifies that the time alignment error for DC-HSDPA with MIMO must be no greater than \frac{1}{2} T_c (instead of \frac{1}{4} T_c).
3.2.2 Single antenna measurement

MIMO measurements are performed on each antenna sequentially. Fig. 37 shows the test setup.

In this case, HS-PDSCH channels with either QPSK or 16QAM in both streams are detected and demodulated automatically. This is done by setting MIMO mode and selecting the antenna to be tested. See Fig. 38 for an example. In this example, a 2x2 MIMO system with 16QAM in both streams was measured at the first antenna. The displayed constellation (see Fig. 39) resulted from the convolution of the 16QAM constellation with itself, and therefore consists of 49 constellation points (9 constellation points would result for QPSK). This means that EVM measurements are possible for these signals, as well. However, because information is available from only one antenna, the received signal cannot be decoded and the bit stream cannot be displayed.
Fig. 38 Single antenna MIMO measurement, showing code domain and constellation diagram.

Fig. 39 Constellation diagram for 16QAM x 16QAM MIMO (after convolution: 49 constellation points).
4 HSPA+ with the CMW500

The CMW can be used as a protocol tester (message analysis) as well as a radio communication tester (call box, RF test).

In addition to W-CDMA, the CMW offers other radio communication standards, including LTE (FDD and TDD), GSM, CDMA2000, 1x-EV-DO and so on. This makes it possible to test InterRAT scenarios, such as W-CDMA handover to GSM or LTE.

Equipped with powerful hardware and various interfaces to wireless devices, the CMW can be used throughout all phases of HSPA+ device development – from the initial module test up to the integration of software and chipset, as well as for conformance and performance tests of the protocol stack of 3GPP standard-compliant wireless devices, see Fig. 40.

![Testing at every phase](image)

Fig. 40 Consistent hardware and software concept for all device development phases.

<table>
<thead>
<tr>
<th>CMW500 HSPA+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 7</td>
</tr>
<tr>
<td>HSPA+ Feature</td>
</tr>
<tr>
<td>Downlink MIMO</td>
</tr>
<tr>
<td>HOM 64 QAM Downlink</td>
</tr>
<tr>
<td>HOM 16 QAM Uplink</td>
</tr>
<tr>
<td>CPC</td>
</tr>
<tr>
<td>F-DPCH</td>
</tr>
<tr>
<td>Improved Layer 2 support for downlink</td>
</tr>
</tbody>
</table>
CMW500 HSPA+

<table>
<thead>
<tr>
<th>Release 7</th>
<th>HSPA+ Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enhanced CELL_FACH state (downlink)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release 8</th>
<th>HSPA+ Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combination of MIMO and 64QAM</td>
</tr>
<tr>
<td></td>
<td>CS over HSPA</td>
</tr>
<tr>
<td></td>
<td>Dual cell HSDPA</td>
</tr>
<tr>
<td></td>
<td>Improved Layer 2 support for uplink</td>
</tr>
<tr>
<td></td>
<td>Enhanced CELL_FACH state (uplink)</td>
</tr>
<tr>
<td></td>
<td>HS-DSCH DRX reception in CELL_FACH</td>
</tr>
<tr>
<td></td>
<td>HSPA VoIP to W-CDMA/GSM CS continuity</td>
</tr>
<tr>
<td></td>
<td>Serving cell change enhancements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release 9</th>
<th>HSPA+ Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dual band HSDPA</td>
</tr>
<tr>
<td></td>
<td>Dual cell HSDPA + MIMO</td>
</tr>
<tr>
<td></td>
<td>TxAA extensions</td>
</tr>
</tbody>
</table>

Table 3: Overview of HSPA+ features in CMW500

4.1 HSPA+ in the CMW protocol tester

The CMW protocol tester provides developers of UE protocol stacks with a specification-conforming reference implementation of the air interface. The comprehensive functions of the programming interfaces and the highly detailed representation in the analysis tools can be used to quickly detect discrepancies in the DUT protocol stack.

The widely used MLAPI interface provides the C++ programming interface to the protocol tester, allowing users to run pre-defined example or reference scenarios and also to develop and modify their own scenarios. As a result, test case creation is significantly simplified and accelerated. The very same tool chain as known from the well established CRTU-W protocol tester environment is available and can be reused.
The Message Composer allows users to compose send and receive constraints, whereas the Message Analyzer provides the means to analyze results and export constraints. The TestSuite Explorer defines configurations and manages suites, while the Project Explorer defines sequences and executes and manages the results. Finally, MS Visual Studio is available for developing and building test scenarios, while the Automation Manager provides full automation during the execution of all test cases and scenarios with minimal or no human interaction. The workflow is illustrated in Fig. 41.

![Test case development workflow](image)

The CMW protocol tester supports a very large number of test cases (TCs). Registered users can view a summary of the currently available TCs on the CMW Customer Web at https://extranet.rohde-schwarz.com/.

4.1.1 HSPA+ E2E throughput test

In addition to message analysis, the main test requirement using the two features is to determine the throughput capabilities of the device under test (DUT), ideally allowing an E2E application to run a specific service of interest. The above illustrated tool chain and the HSPA+ functionality offer an ideal environment to assess the DUT performance, including E2E testing.

Fig. 42 shows available example scenarios to test HSPA+ functionality. Using these scenarios, the CMW protocol tester generates internal arbitrary data after setting up the appropriate radio bearer with the DUT.
Fig. 42 Project Explorer with 3G test cases for HSPA+ testing.

After the test case is started successfully, the throughput can be evaluated by starting the Protocol Testing Monitor (PTM), for example (see Fig. 43). The logging capabilities of the protocol tester and the message analyzer permit a detailed investigation of the message flow, making it easy to identify loss of performance due to incorrect behavior and/or protocol errors, for example.

In addition to the throughput performance at RLC level, it is essential to identify the E2E capabilities of the device under test. This is necessary in order to understand the performance of a specific service at IP level.

This happens similar to the internal radio bearer set-up, however in this case no internal data is generated. IP data has to be provided from a suitable application. The Data Application Unit (DAU, see 4.3) provides a convenient method for E2E-Testing.
4.1.2 Running HSPA+ MLAPI scenarios and parallel UL measurements

As mentioned above, the CMW can be used as both a protocol tester and an RF tester. It is even possible to install both protocol testing and RF testing software options, and consequently to run RF measurements in parallel to a MLAPI test scenario started in the protocol environment. The CMW radio communication tester offers a multi-evaluation mode for performing RF measurements as illustrated in Fig. 44 (see next section 4.2).

This is particularly useful when testing the 64QAM and improved layer2 feature out of the HSPA+ feature set, because it allows users to analyze the throughput and at the same time monitor whether basic Tx operation of the DUT is still running within 3GPP-specified limits.

4.2 HSPA+ in the CMW RF tester ("call box")

When used as an RF tester, the CMW consists of a generator for the W-CDMA downlink. It can play back ARB files generated using an external tool, such as WinIQSim or Matlab. An online generator is also available as an option. It permits rapid reconfiguration of the signal and dynamic elements, such as the transmit power control (TPC).
Transmitter tests (TX)

Measurements on the TX side of the DUT are made possible with the W-CDMA Multi Evaluation option (see Fig. 44).

The overview screen provides all measured results and scalar values for the essential measurements: UE power, error vector magnitude (EVM) root mean square (RMS) power, carrier frequency error and occupied bandwidth (OBW). Because measurements results are based on the same set of data, the individual results relate to each other, thus facilitating troubleshooting and debugging.

Fig. 44 Multi-evaluation mode of RF uplink measurements.

The overview display in multi-evaluation mode can be adapted to the individual testing needs. For example, it may be necessary to closely monitor only two measurement results, or just one measurement result with a comparison of maximum and average values. The overview display can be configured to meet individual needs.

Signaling and receiver tests (RX)

The CMW also provides signaling. The "W-CDMA signaling" firmware application (option KS400) allows users to emulate a UTRAN cell and to communicate with the UE under test. The UE can synchronize to the DL signal, register to the circuit switched (CS) domain and attach to the packet switched (PS) domain. A connection can be set up for the CS domain. In addition to the signaling mode, a reduced signaling mode is supported. It allows users to set up a connection without any registration, attach and layer 3 signaling. As a result, modules supporting only layer 1 and 2 can be tested.

This means that RX tests, such as BER or ACK/NACK measurements (BLER, throughput), can be performed in test mode on the DUT.
The CMW supports all H-Sets from 1...12 [5][10] as predefined settings. The settings can also be configured individually by selecting "User Defined" (option KS411). A wizard is also available. It automatically matches the settings to a scenario based on the UE category. For example, the scenario "Maximum Throughput" provides an easily configured test of the maximum data rates. The CMW configures the settings automatically. The user does not have to make any changes.

End-to-end data tests can be performed using the DAU (see the next section).

4.3 Data Application Unit (DAU) for CMW

The "Data Application Unit" (option B450A) makes it possible to test data transfer via TCP/IP or UDP/IP. It allows users to run Internet Protocol (IP) services on the CMW, such as file transfer and Web browsing. The DAU provides a common and consistent data testing solution on the CMW for all supported radio access technologies.

The DAU is required when testing End-to-End (E2E) IP data transfer as well as when using the instrument for protocol testing (U-plane tests). Together with the DAU, IP-based measurement (option KM050) applications allow users to test and measure the properties of the IP connection, such as network latency or performance. The measurements support Internet protocols IPv4 (option KA100) and IPv6 (option KA150 on top of KA100).
Fig. 46 Overview of the tests in the data application unit. PING, IPerf and Throughput at a glance.

Fig. 47 RLC throughput test of a DC-HSPA+ signal at 42 Mbit/s using the DAU.
4.4 Channel simulation – fading

In order to simulate the channel attributes for receiver tests, the CMW can be connected to the AMU via optional digital IQ interfaces. The baseband signals in the AMU are faded, and MIMO (e.g. 2x2) and AWGN are added. The two RF paths can be faded independently of one another (e.g. for DC-HSPA+). The AMU has predefined fading profiles for W-CDMA in accordance with specification [2][5]. The fading parameters can also be changed separately.

Fig. 48 Test setup for channel simulation with the CMW and AMU (two-channel with MIMO).

Fig. 49 Block diagram in AMU with 2x2 MIMO, fading and AWGN.
UEs have to pass various test phases during their development. In the early phase of R&D, the different components of the UE like baseband and RF part are tested independently from each other.

During this time radiocom testers, signal generators (SG) and signal analyzers (SA) are used typically in non-signaling test environments in order to investigate RF receiver and transmitter characteristics of the UE. Pure baseband tests can be done by using simulation and verification using the IQ-interface of the UE which is connected to the IQ-interface of channel emulators, SA and SG. As soon as a logical and physical call setup can be established, further tests on UE prototypes can be performed with the help of a signaling unit (SU) fitted to a radiocom tester like CMW.

Chipset and UE manufacturers will apply differing test specifications. There are internally defined specs which are based on knowledge and prior experience. This is a main part of the test area. Other tests are derived from i.e. the 3GPP test specifications like [TS 34.121]. As maturity of a UE design increases, more testing conditions are added. “House” test specifications as well as [TS 34.121] contain HSPA test scenarios with fading and interference conditions. Additionally, extreme test conditions with varying environmental factors like supply voltage, humidity and temperature are defined for a UE.

Automated test systems like TS8980 with onboard components of SU, SG and SA are able to provide the widest range of such testing conditions. In a pre-conformance context, the user friendly flexibility to change testing parameters like effects of fading and interference as well as tools to find the real design limits in an automated and hence repeatable way are essential. After all, no flaw should pass unnoticed before entering the final stage to market: UE RF certification.

The type approval or certification of UEs according to GCF, PTCRB or a given set of Network Operator test plans is the next phase. GCF and PTCRB requirements typically consist of a subset of otherwise unchanged tests from the 3GPP test specifications.

Network Operator RF test plans usually consist of two types of tests
1. those based on 3GPP with extensions and/or tighter limits, based on an operator’s own experience
2. completely new tests as defined
 a) to protect other services (like Digital TV, ATC Radar, Geolocation services)
 b) ensure UE performance is not unduly compromised in the vicinity of such other services.

Reproducible and precise measurements are crucial for type approval test systems like the TS8980FTA. Apart from basic accuracy, built-in functions for user-guidance on and/or full automation of calibration is a pre-requisite for a test system to function as an arbiter of UE performance.

Validated certification test case packages for HSPA+ include DC-HSPA, 64QAM DL, CPC, 16QAM UL, Enhanced CELL-FACH, Receiver Types 3 and 3i, and R7 MIMO.
The TS8980 family of test systems offers the most complete coverage in the industry for applications in W-CDMA and LTE test. TS8980 is used by all leading test houses, first-rate chipset and UE manufacturers, and major network operators.

UTRA and E-UTRA Conformance test in line with GCF and PTCRB as used by labs accredited for certification of mobile devices are complemented by a very broad range of acceptance test packages as defined by many of the leading Network Operators.

The CONTEST graphical user interface gives control over test case execution, automation of DUT, Climatic chamber, DC supply and other external devices. The GUI also comes with a brace of functions for DUT management and standard-compliant result reporting as well as internal and external data base control for result handling, documentation and storage.

Margin Search routines and Performance Evaluation modes allow to evaluate the headroom a DUT has vs certification-level PASS criteria or vs user-specified minimum values.

For more R&D-related work, specific Layer-1 verification packages may be run. RF test for LTE and W-CDMA may be combined with RRM conformance for LTE/W-CDMA, Performance Analysis for LTE/W-CDMA and Location-based services test plans.
Available validated test case packages for HSPA+ are:

- 64QAM
- CPC
- Enhanced CELL
- 16 QAM UL
- Type 3
- MIMO R7
- Type 3i
- Dual Carrier
6 Drive test solutions

ROMES4 is the universal software platform for the Rohde & Schwarz network optimization systems. In combination with other test and measurement equipment, such as wireless communications scanners and test mobile phones, it provides solutions for all essential tasks involved in coverage measurements, interference identification and performance measurements in wireless communications networks.

Besides pure recording and visualization of test parameters, data is processed instantly and statistics are calculated in real-time. At present, the GSM/EDGE, WCDMA/HSPA+, CDMA2000® 1xEVDO Rev. A, WLAN (IEEE 802.11b, g), WiMAX™ (IEEE 802.16e), LTE, DVB-T, DVB-H and TETRA technologies are supported.

ROMES4 offers over 15 HSPA(+) specific "views", which quickly and clearly show all important parameters, thus providing a rapid assessment of the performance.

To optimize an HSPA(+) network, the user observes the data throughput as well as the channel quality (CQI). A low CQI results from a small block size and a low-order modulation. The throughput rates of a network can be optimized by increasing the two values.

Fig. 51 Throughput view for W-CDMA/HSPA(+).
ROMES fully supports HSPA+ dual cell, which allows a downlink throughput of up to 42 Mbps.

For more information about ROMES and the supported test telephones, refer to the ROMES product brochure [9].
7 Appendix

7.1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>ACK</td>
<td>Acknowledgement</td>
</tr>
<tr>
<td>ARQ</td>
<td>Automatic Repeat Request</td>
</tr>
<tr>
<td>BCCH</td>
<td>Broadcast Control Channel</td>
</tr>
<tr>
<td>CCCH</td>
<td>Common Control Channel</td>
</tr>
<tr>
<td>CPC</td>
<td>Continuous Packet Connectivity</td>
</tr>
<tr>
<td>CPICH</td>
<td>Common Pilot Channel</td>
</tr>
<tr>
<td>CQI</td>
<td>Channel Quality Indicator</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>DCCH</td>
<td>Dedicated Control Channel</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>DPCCH</td>
<td>Dedicated Physical Control Channel</td>
</tr>
<tr>
<td>DPDCCH</td>
<td>Dedicated Physical Data Channel</td>
</tr>
<tr>
<td>DRX</td>
<td>Discontinuous Reception</td>
</tr>
<tr>
<td>DTCH</td>
<td>Dedicated Traffic Channel</td>
</tr>
<tr>
<td>DTX</td>
<td>Discontinuous Transmission</td>
</tr>
<tr>
<td>D-TxAA</td>
<td>Double Transmit Antenna Array</td>
</tr>
<tr>
<td>E-AGCH</td>
<td>E-DCH Absolute Grant Channel</td>
</tr>
<tr>
<td>E-DCH</td>
<td>Enhanced Dedicated Channel</td>
</tr>
<tr>
<td>E-DPDCCH</td>
<td>Enhanced Dedicated Physical Data Channel</td>
</tr>
<tr>
<td>E-RGCH</td>
<td>E-DCH Relative Grant Channel</td>
</tr>
<tr>
<td>FACH</td>
<td>Forward Access Channel</td>
</tr>
<tr>
<td>F-DPCH</td>
<td>Fractional Dedicated Physical Channel</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplex</td>
</tr>
<tr>
<td>HARQ</td>
<td>Hybrid Automatic Repeat Request</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High Speed Downlink Packet Access</td>
</tr>
<tr>
<td>HS-DPCCH</td>
<td>High Speed Dedicated Physical Control Channel</td>
</tr>
<tr>
<td>HS-DSCH</td>
<td>High Speed Downlink Shared Channel</td>
</tr>
<tr>
<td>HSPA</td>
<td>High Speed Packet Access</td>
</tr>
<tr>
<td>HS-PDSCH</td>
<td>High Speed Physical Downlink Shared Channel</td>
</tr>
<tr>
<td>HS-SCCH</td>
<td>High Speed Shared Control Channel</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High Speed Uplink Packet Access</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input Multiple Output</td>
</tr>
<tr>
<td>NACK</td>
<td>Negative Acknowledgement</td>
</tr>
<tr>
<td>PAM</td>
<td>Pulse Amplitude Modulation</td>
</tr>
<tr>
<td>PCCH</td>
<td>Paging Control Channel</td>
</tr>
<tr>
<td>PCH</td>
<td>Paging Channel</td>
</tr>
<tr>
<td>PCI</td>
<td>Precoding Control Indication</td>
</tr>
<tr>
<td>P-CPICH</td>
<td>Primary Common Pilot Channel</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>PCH</td>
<td>Paging Channel</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PICH</td>
<td>Paging Indicator Channel</td>
</tr>
<tr>
<td>PRACH</td>
<td>Physical RACH</td>
</tr>
</tbody>
</table>
7.2 Literature

[2] 3GPP TS 25.141; **Base Station (BS) Conformance Testing (FDD)**, Release 10

[6] 3GPP TS 25.104; **Base Station (BS) Radio Transmission and Reception (FDD)**, Release 10

[7] 3GPP TS 25.211; **Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD)**, Release 10

[8] Rohde & Schwarz: **Software Manual FS-K72/K74/K74+**

[9] Rohde & Schwarz: **ROMES4 Drive Test Software**, Product Brochure

[10] 3GPP TS 34.121-1; **User Equipment (UE) Conformance Specification; Radio Transmission and Reception (FDD); Part 1: Conformance Specification**, Release 10

RACH Random Access Channel
RAN Radio Access Network
RAT Radio Access Technology
RF Radio Frequency
RRC Radio Resource Control
RV Redundancy Version
S-CCPCH Secondary Common Control Physical Channel
S-CPICH Secondary Common Pilot Channel
TDD Time Division Duplex
TFCI Transport Format Combination Indicator
TPC Transmit Power Control
TTI Transmission Time Interval
UE User Equipment
UL Uplink
UMTS Universal Mobile Telecommunications System
UTRA UMTS Terrestrial Radio Access
UTRAN UMTS Terrestrial Radio Access Network
VoIP Voice over IP
WCDMA Wideband Code Division Multiple Access

7.3 Additional Information
This application note is subject to improvements and extensions. Please visit our website to download new versions. Please send any comments or suggestions about this application note to

TM-Applications@rohde-schwarz.com

7.4 Ordering Information

<table>
<thead>
<tr>
<th>Vector Signal Generator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SMU200A</td>
<td>1141.2005.02</td>
</tr>
<tr>
<td>SMU-B9</td>
<td>Baseband Generator with ARB (128 Msamples) and Digital Modulation (realtime)</td>
</tr>
<tr>
<td>SMU-B10</td>
<td>Baseband Generator with ARB (64 Msamples) and Digital Modulation (realtime)</td>
</tr>
<tr>
<td>SMU-B11</td>
<td>Baseband Generator with ARB (16 Msamples) and Digital Modulation (realtime)</td>
</tr>
<tr>
<td>SMU-B13</td>
<td>Baseband Main Module</td>
</tr>
<tr>
<td>SMU-B102 / B103 /B104 / B106</td>
<td>1st RF Path</td>
</tr>
<tr>
<td>SMU-B202 / B203</td>
<td>2nd RF Path</td>
</tr>
<tr>
<td>SMU-K42</td>
<td>Digital Standard 3GPP FDD</td>
</tr>
<tr>
<td>SMU-K43</td>
<td>3GPP FDD Enhanced MS/BS Tests, incl. HSDPA</td>
</tr>
<tr>
<td>SMU-K45</td>
<td>Digital Standard 3GPP FDD HSUPA</td>
</tr>
<tr>
<td>SMU-K59</td>
<td>Digital Standard HSPA+</td>
</tr>
<tr>
<td>SMU-K62</td>
<td>Additive White Gaussian Noise (AWGN)</td>
</tr>
<tr>
<td>SMU-B14</td>
<td>Fading Simulator</td>
</tr>
<tr>
<td>SMU-B15</td>
<td>Fading Simulator Extension</td>
</tr>
<tr>
<td>SMU-K71</td>
<td>Dynamic Fading and Enhanced Resolution</td>
</tr>
</tbody>
</table>
Ordering Information

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMU-K74</td>
<td>MIMO Fading</td>
<td>1408.7762.02</td>
</tr>
<tr>
<td>SMBV100A</td>
<td></td>
<td>1407.6004.02</td>
</tr>
<tr>
<td>SMBV-B106</td>
<td>RF 9 kHz – 6 GHz</td>
<td>1407.9703.02</td>
</tr>
<tr>
<td>SMBV-B10</td>
<td>Baseband Generator with Digital Modulation (Realtime) and ARB (32 Msamples), 120-MHz RF BW</td>
<td>407.8907.02</td>
</tr>
<tr>
<td>SMBV-B55</td>
<td>Memory Extension for ARB to 256 Msamples</td>
<td>1407.9203.02</td>
</tr>
<tr>
<td>SMBV-K42</td>
<td>Digital Standard 3GPP FDD</td>
<td>1415.8048.02</td>
</tr>
<tr>
<td>SMBV-K43</td>
<td>3GPP FDD Enhanced MS/BS Tests, incl. HSDPA</td>
<td>1415.8054.02</td>
</tr>
<tr>
<td>SMBV-K59</td>
<td>Digital Standard HSPA+</td>
<td>1415.8219.02</td>
</tr>
<tr>
<td>SMBV-K62</td>
<td>Additive White Gaussian Noise (AWGN)</td>
<td>1415.8419.02</td>
</tr>
</tbody>
</table>
Ordering Information

Signal analyzers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSW</td>
<td>Up to 8, 13, 26 GHz</td>
<td>1312.8000Kxx</td>
</tr>
<tr>
<td>FSW-K72</td>
<td>3GPP (W-CDMA) BS (DL) Analysis, incl. HSDPA and HSPA+</td>
<td>1313.1422.02</td>
</tr>
<tr>
<td>FSW-K73</td>
<td>3GPP (WCDMA) UE (UL) Analysis, incl. HSUPA and HSUPA+</td>
<td></td>
</tr>
<tr>
<td>FSQ</td>
<td>Up to 3, 8, 26, 40 GHz</td>
<td>1313.9100.xx</td>
</tr>
<tr>
<td>FS-K72</td>
<td>3GPP BTS/Node B FDD Application Firmware</td>
<td>1154.7000.02</td>
</tr>
<tr>
<td>FS-K73</td>
<td>3GPP UE FDD Application Firmware</td>
<td>1154.7252.02</td>
</tr>
<tr>
<td>FS-K73+</td>
<td>3GPP HSPA+ UE Application Firmware</td>
<td>1309.9274.02</td>
</tr>
<tr>
<td>FS-K74</td>
<td>3GPP HSDPA BTS Application Firmware</td>
<td>1300.7156.02</td>
</tr>
<tr>
<td>FS-K74+</td>
<td>3GPP HSPA+ BTS Application Firmware</td>
<td>1309.9180.02</td>
</tr>
<tr>
<td>FSV</td>
<td>Up to 3, 7, 13, 30, 40 GHz</td>
<td>1307.9002.xx</td>
</tr>
<tr>
<td>FSV-K72</td>
<td>3GPP FDD BS Analysis</td>
<td>1310.8503.02</td>
</tr>
<tr>
<td>FSV-K73</td>
<td>3GPP UE (UL) Analysis, incl. HSUPA</td>
<td>1310.8555.02</td>
</tr>
</tbody>
</table>

Radio Communication Tester

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMW500</td>
<td>Radio Communication Tester</td>
<td>1201.0002K02</td>
</tr>
<tr>
<td>CMW-S550M</td>
<td>Baseband Interconnection</td>
<td>1202.4801.14</td>
</tr>
<tr>
<td>CMW-S590D</td>
<td>RF Frontend</td>
<td>1202.5108.03</td>
</tr>
<tr>
<td>CMW-B590A</td>
<td>RF Frontend 2</td>
<td>1202.8707.02</td>
</tr>
<tr>
<td>CMW-B300A</td>
<td>Signaling Unit Wideband (SUW), for WCDMA / LTE</td>
<td>1202.6304.02</td>
</tr>
<tr>
<td>CMW-KP40x</td>
<td>Protocol Stack Option WCDMA</td>
<td></td>
</tr>
<tr>
<td>CMW-KC40x</td>
<td>Test Cases WCDMA</td>
<td></td>
</tr>
<tr>
<td>CMW-KF45x</td>
<td>WCDMA HSPA+ MLAPI Scenarios</td>
<td></td>
</tr>
<tr>
<td>CMW-KM40x</td>
<td>WCDMA, TX Measurement, Uplink</td>
<td></td>
</tr>
<tr>
<td>CMW-KS40x</td>
<td>WCDMA Signaling/Network Emulation</td>
<td></td>
</tr>
</tbody>
</table>

Drive Test

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSMW</td>
<td>Universal Radio Network Analyzer</td>
<td>1503.3001.03</td>
</tr>
<tr>
<td>ROMES4</td>
<td>Drive Test Software</td>
<td>1117.6885.04</td>
</tr>
</tbody>
</table>

Systems

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS8980</td>
<td>RF Test System</td>
<td>1510.6002.02</td>
</tr>
<tr>
<td>TS8980FTA</td>
<td>Conformance Test System</td>
<td>0999.1902.86</td>
</tr>
<tr>
<td>TS8980IB</td>
<td>RF Conformance Test System</td>
<td>0999.1902.84</td>
</tr>
<tr>
<td>TS8980S</td>
<td>Pre-Compliance Test System</td>
<td>0999.1902.82</td>
</tr>
</tbody>
</table>
If using the R&S® WinIQSIM2™ with SMBV or SMU to generate standard signals, you must include the appropriate K2x option, where x refers to the standard to be used as defined in this table. For example, to generate HSPA+ signals with WinIQSIM2, you need option K-259.

xx represents the various frequency ranges (e.g. 1155.5001.26 up to 26 GHz).

Note: Available options are not listed in detail. Please contact your local Rohde & Schwarz sales office for further assistance.
About Rohde & Schwarz
Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established more than 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Environmental commitment
- Energy-efficient products
- Continuous improvement in environmental sustainability
- ISO 14001-certified environmental management system

Regional contact
Europe, Africa, Middle East
+49 89 4129 12345
customersupport@rohde-schwarz.com

North America
1-888-TEST-RSA (1-888-837-8772)
customer.support@rsa.rohde-schwarz.com

Latin America
+1-410-910-7988
customersupport.la@rohde-schwarz.com

Asia/Pacific
+65 65 13 04 88
customersupport.asia@rohde-schwarz.com

China
+86-800-810-8228 /+86-400-650-5896
customersupport.china@rohde-schwarz.com

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG; Trade names are trademarks of the owners.