

Top Ten SCPI Programming
Tips for Signal Generators
Application Note

Products:

| R&SSMW200A

| R&SSMU200A

| R&SSMBV100A

| R&SSMJ200A

| R&SSMATE200A

| R&SAMU200A

| R&SSGS100A

| R&SSMA100A

| R&SSMB100A

| R&SSMC100A

| R&SSMF100A

| R&SAFQ100A

| R&SAFQ100B

This application note briefly summarizes

basic tips and information about SCPI

programming for remote-controlling

Rohde & Schwarz signal generators.

A
pp

lic
at

io
n

N
ot

e

C
. T

rö
st

er

04
.2

01
3-

1G
P

79
_1

E

Error! No text of specified style in document.

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 2

 Table of Contents

1 Overview ... 4

2 Top Ten Tips ... 5

3 Program Start ... 6

3.1 Preset Instrument ... 6

3.2 Reset Status Registers and Clear Error Queue ... 6

3.3 Query Static Errors .. 6

4 Command Synchronization ... 8

4.1 Command Sequence .. 8

4.2 Avoiding Fixed Delays ... 8

4.2.1 Operation Complete Query .. 9

4.2.2 Query OPC Status in the Event Status Register10

4.2.2.1 Polling the ESR Using a Loop ...11

4.2.2.2 Polling the ESR Using a Timer ..13

4.2.3 Polling the Baseband Progress ..13

4.2.4 Summary ...14

4.2.4.1 Synchronization Commands ...14

4.2.4.2 Polling Methods ..15

4.3 Synchronization of Multiple Instruments ...15

4.3.1 Settling of Test Signal ..15

4.3.2 Generators in Master-Slave Mode ..16

5 Error Queries .. 17

5.1 Query Error Queue ...17

5.2 Query Static Errors ..18

6 Speed Optimization .. 19

6.1 Settings Configuration ...19

6.2 Synchronization..20

6.3 Command Blocks ...20

6.4 Waveforms ..20

6.4.1 Saving Transfer Time ...20

6.4.2 Saving Loading Time ...21

Error! No text of specified style in document.

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 3

6.5 GUI Update ..21

6.6 GPIB versus LAN ..21

7 Waveform Transfer & Loading .. 23

7.1 Waveform Transfer ...23

7.2 Waveform Loading ...24

8 Example Script ... 25

9 Programming Lists and Sweeps ... 29

9.1 RF List Mode ...29

9.2 Sweep Mode ..30

10 Miscellaneous Tips .. 31

10.1 Finding and Recording SCPI Commands ..31

10.1.1 Instrument Help ..31

10.1.2 SCPI Sequence Recording ..32

10.2 Instrument Simulation for Testing SCPI Commands..............................33

10.3 Query Your Instrument ..34

10.4 Code Debugging ...35

11 Further Reading ... 36

12 References .. 36

Overview

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 4

1 Overview
This application note briefly summarizes basic tips and information about SCPI

1

programming for remote-controlling Rohde & Schwarz signal generators.

The following section lists ten useful SCPI programming tips. These tips and additional

helpful hints are described in detail in the remaining sections of this application note.

For a complete description about remote control programming, please see the

operating manual of your instrument and the comprehensive “Remote Control Basics”

section of the R&S
®
SMU200A Vector Signal Generator Operating Manual (reference

[1]). This manual can be downloaded free of charge from the Rohde & Schwarz

website. The general information about remote control given in this manual applies to

all Rohde & Schwarz signal generators. Section 11 lists further literature dealing with

remote control basics and programming.

1
 SCPI is the abbreviation for Standard Commands for Programmable Instruments – see reference [8] for an

introduction.

Top Ten Tips

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 5

2 Top Ten Tips
Automated test programs should be written such that they are fast and fail-safe. Ten

useful SCPI programming tips are given in the following overview:

Top ten SCPI programming tips

Tip Details

Start with defined state

At program start, reset the instrument to a defined state using the
commands *RST, *CLS and query for static errors using the command
SYST:SERR?.

section
3

Wait with *OPC?

Avoid fixed delays. Instead, use the synchronization command *OPC? to
wait for command completion.

section
4.2.1

Poll the baseband progress

To wait for completion of time-consuming baseband calculations or
waveform loading operations, poll the baseband progress periodically
using the command SOUR:BB:PROG:MCOD?.

section
4.2.3

Switch off baseband during configuration

To save calculation time, configure the baseband settings (e.g. digital
standards settings or ARB settings) while the baseband is deactivated.
Make all the required settings first, then activate the baseband.

section
6.1

Query errors

Regularly read out the error queue using the command SYST:ERR? in a
loop.

section
5.1

Form logical command blocks

Group several commands into logical blocks and send an *OPC? and an
error query after each block.

section
6.3

Send only one command per line

If you want to make sure that commands are actually processed in a
certain order, send each command in a separate command line.

section
4.1

Synchronize instruments

When controlling multiple instruments that are interdependent,
synchronize the devices to avoid instrument and measurement errors.

section
4.3

Switch off GUI update

Switch off the display (GUI) update using the command
SYST:DISP:UPD OFF to increase the setting speed.

section
6.5

Utilize online help and SCPI sequence recorder

Use the instrument’s online help or SCPI recorder to find/record the
corresponding SCPI command for a particular setting parameter or action
– fast and easily.

section
10.1

These tips and other helpful hints are described in more detail in the following sections.

Program Start

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 6

3 Program Start
An automated test program should first initialize the instrument to a defined state. This

is important because reproducible initial conditions are basic for successful test runs.

In addition, the default instrument settings provide a reliable basis for all other settings.

3.1 Preset Instrument

At the beginning of the test program, send a preset command. You can use one of the

following preset commands to reset the instrument to a defined default state.

SCPI command: *RST

SCPI command: SYST:PRES

All instrument settings (also those that are not active currently) are reset to their default

values. The RF output will be deactivated.

Some settings – such as the GPIB address or the reference oscillator settings – are

not affected by the preset commands and remain unchanged. The status registers and

the error queue are also not affected. For a complete description about which

settings/functions are affected by the preset commands and which are not, see

references [1] (search for keyword “preset key”) and [8].

Note that a preset command will demand some time until it is completed.

3.2 Reset Status Registers and Clear Error Queue

At the beginning of the test program, reset the status registers of the instrument and

clear the error queue with the “clear status” command:

SCPI command: *CLS

This command clears the status byte (STB), the event status register (ESR), the

operation event register and the event register in question. It also clears the error

queue and the output buffer. For a more detailed description of the “clear status”

command see references [8] and [1] (search for keyword “clear status”).

3.3 Query Static Errors

Static errors indicate critical instrument errors. A static error occurs, for example, if the

instrument is configured to work with an external reference signal which is not

connected.

Example:

We assume the external reference signal is not connected.

Program Start

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 7

At program start, we cleared the error queue using the *CLS command. A normal error

query (e.g. SYST:ERR?, see section 5) now reports 0, “No error”, although the external

reference signal is missing. Therefore, it is important to query for static errors at

program start to make sure the instrument is in an error-free state.

At the beginning of the test program, query the instrument for static errors with the

following command:

SCPI query: SYST:SERR?

This query returns all static errors that are currently present. Static errors are

permanent error messages and are not deleted by this query.

If static errors are present, the test program must react appropriately, e.g. by aborting

the test run and displaying the received error message.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 8

4 Command Synchronization

4.1 Command Sequence

It is possible to send several SCPI commands in a single command line, e.g.:

Command line: SOUR:POW:OFFS 20 dBm; :SOUR:POW -50 dBm

but the commands are not necessarily processed by the instrument in the order they

are sent
2
. In order to make sure that commands are actually processed in a certain

order, send each command in a separate command line, e.g.:

Command sequence: SOUR:POW:OFFS 20 dBm

 SOUR:POW -50 dBm

As a general rule, send commands and (interdependent) queries in different command

lines, e.g.:

SCPI command: SOUR:FREQ 1 GHz

SCPI query: SOUR:FREQ?

4.2 Avoiding Fixed Delays

Certain actions such as an instrument reset or a waveform loading operation take

some time (up to several seconds) for completion – see table on next page. Often it is

necessary to wait until an action has been completed before sending further

commands. In fact, to be on the safe side, it is advisable to wait for the completion of a

command before sending the next one.

In automated test programs, fixed delays are often used to implement this waiting

period – for example, by using (language-specific) delay or pause functions. This

technique is explicitly not recommended due to the following reasons:

 Fixed delays are unsafe, since they can principally not guarantee command

completion. For this reason, programmers often implement relatively long

delays with plenty of headroom, which considerably slows down the program.

 Fixed delays are particularly disadvantageous if busy-waiting delays are

implemented that block the test program and waste processor time (see

section 4.2.2.1 for more details).

 If the instrument is updated with new firmware, some commands may take

longer to complete than before (e.g. due to added functionality). As a result,

the programmed fixed delay may no longer be sufficient.

2
 It is possible to take advantage of this fact in exceptional cases, e.g. when configuring interdependent

parameters for the digital standards.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 9

 Sometimes, programmers use “do nothing” loops to implement fixed delays.

This can produce unpredictable delays when running the test program on a

different computer due to different processor speeds.

 Delay functions guarantee only a minimum delay period. The delay may be

longer than requested due to the scheduling of other activity by the system.

Additionally, the processor timer used to deduce the delay period has only a

certain resolution in the ms range which is system-dependent.

Therefore, do not use any fixed delays in your test program! There are much better

solutions, as described in the following sections.

Time-consuming operations – overview

Operation Duration (approximate) Remark

Instrument reset < 5 s

Waveform loading operation 1 s to 1 min depending on size of waveform

Baseband calculation 1 s to several minutes depending on configured signal, e.g. number

of frames

Save/recall operations < 10 s

Instrument calibration 10 s to several minutes depending on calibration and instrument

Instrument self-test > 30 s depending on instrument

4.2.1 Operation Complete Query

Use the operation complete query to wait for the completion of commands that take

little or moderate time to execute:

SCPI query: *OPC?

This query returns a “1” if all commands sent before *OPC? have been executed and

the hardware has settled. While the test program is waiting for the response, no further

commands are sent to the instrument.

For example, send *OPC? directly after the command to wait for its completion.

Command line: SOUR:FREQ 3 GHz; *OPC?

The *OPC? query blocks the test program while waiting for the response. Furthermore,

a timeout will occur if the “1” is not received in time (the VISA timeout is typically two to

five seconds and should not be set to higher values). For these reasons, use *OPC? to

wait for commands that take only little or moderate time to complete.

If you need to wait for the completion of commands that are very time-consuming, it is

advisable to use other synchronization methods. The two recommended methods are

described in the next two sections.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 10

Timeout

A timeout denotes the time period the controller waits for a response from the

instrument. If the specified period has elapsed, the communication is aborted with a

(timeout) error.

4.2.2 Query OPC Status in the Event Status Register

If you activate a time-consuming operation and wait for completion with *OPC?, a

timeout could occur before the operation is finished and you do not receive the

returned “1”. In addition, the test program is blocked while waiting with *OPC?. It is not

possible to process other (not interdependent) commands in the meantime or to

communicate with other instruments.

Thus, for time-consuming operations, you can avoid blocking the communication by

sending the operation complete command *OPC:

SCPI sequence: *CLS

 *OPC

and afterwards polling the operation complete status in the event status register with

the following command:

SCPI query: *ESR?

This query returns the content of the event status register and afterwards clears the

content. The event status register comprises eight bits. We are interested in bit 0 – the

operation complete bit. If an *OPC command is sent and if all commands sent before

*OPC have been executed, then this bit is set to 1. In contrast to the *OPC? query, the

*OPC command does not block command processing.

Event status register

Bit number Meaning

0 (LSB) Operation complete

1 Not used

2 Query error

3 Device-dependent error

4 Execution error

5 Command error

6 User request

7 (MSB) Power on

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 11

0 (LSB)

1

2

3

4

5

6

7 (MSB)

OPC

x

x

x

x

x

x

x

1

0

0

0

0

0

0

0

OPC

0

0

0

0

0

0

0

ESR 1

Bit

number

bitwise

AND

The *ESR? command returns an eight-bit value and afterwards clears all bits. For

example, let us assume the response is 32. The eight-bit binary representation of 32 is

00100000. The most significant bit (MSB) of the event status register is bit number 7.

Thus, bit number 5 is 1, all other bits are 0. In this example, a command error has

occurred. After readout, bit number 5 is set to 0.

We are now interested in bit number 0 of the event status register. To “extract” the

OPC bit from the received eight bits apply a bitwise “AND” operation with the decimal

number 1 (eight-bit binary representation is 00000001).

Bitwise AND

A logical AND operation is performed on each pair of corresponding bits. In each pair,

the result is 1, if the first bit is 1 and the second bit is 1. Otherwise, the result is 0.

Effectively, the bitwise AND operation with the decimal 1 sets all bits to 0 except the

OPC bit. The result is either 00000001 in case the OPC bit is 1, or 00000000 in case

the OPC bit is 0. In decimal representation, the result is either 1 (meaning the

operation is complete) or 0 (meaning the operation is not yet complete).

Poll the event status register periodically until the returned OPC bit is 1.

4.2.2.1 Polling the ESR Using a Loop

The easiest way to poll the event status register is to use a loop with a delay function

(such as the sleep() function in C).

It is important to use a non-busy-wait delay function in order not to block the test

program, or more precisely the currently active thread.

Busy-waiting

Busy waits waste CPU resources that could be used to execute different tasks instead.

Generally, busy waits should be avoided. Delays should be implemented using non-

busy waits that take up only little CPU time, as they spend most of their time “asleep”.

Non-busy waits cause the active thread to be suspended from execution and pass the

CPU resources on to other threads.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 12

Example:

 Clear the ESR with the command: *CLS

 Activate an LTE baseband signal using the command:
SOUR:BB:EUTR:STAT ON

 Send the command *OPC

 Use a loop to

- Send the query *ESR?

- Process the response by performing a bitwise AND operation with the

decimal number 1

MATLAB code example:
% ESRvalue is the response returned by query *ESR?

OPCbit = bitand(ESRvalue,1);

C code example:
// ESRvalue is the response returned by query *ESR?

OPCbit = ESRvalue & 1;

- Evaluate the returned OPC bit:

o If the OPC bit is 0, continue polling.

o If the OPC bit is 1, leave the loop, i.e. stop polling.

- Apply a delay function (non-busy wait).

Pseudo code example:

send_command (err, '*CLS')

send_command (err, 'SOUR:BB:EUTR:STAT ON')

send_command (err, '*OPC')

ESRvalue = 0

while (ESRvalue & 1) == 0

{

ESRvalue = send_query (err, '*ESR?')

 sleep (100)

}

During the sleep, the CPU is not occupied by the loop and the processor can execute

other tasks, for example to process the event loop. You can trigger the event

processing by including the respective command in the loop. In this way, the program

can regularly update the graphical user interface (GUI) and react to inputs from the

GUI (e.g. from an “Abort” button) or external control signals (e.g. used in industrial

workflows).

Polling the status event register in a loop is simple and failsafe and is thus the

recommended method for polling. The more challenging alternative is the timer

method, which is described in the next section.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 13

4.2.2.2 Polling the ESR Using a Timer

The event status register can also be polled by means of a repetitive timer.

Example:

 Clear the ESR with the command: *CLS

 Activate an LTE baseband signal using the command:
SOUR:BB:EUTR:STAT ON

 Send the command *OPC

 Start a repetitive timer (non-busy wait)

 Send the query *ESR? when a timer event occurs

 Process the response by performing a bitwise AND operation with the decimal

number 1

 Evaluate the returned OPC bit:

- If the OPC bit is 0, continue polling.

- If the OPC bit is 1, stop the timer, i.e. stop polling.

See section 8 for a code example that uses the timer method.

You can send other (not interdependent) commands to the instrument while polling the

status event register. However, you must not use the *OPC? command in the

meantime, since this query also applies to the STAT ON command and can thus lead

to a timeout.

4.2.3 Polling the Baseband Progress

Baseband signal calculations can be time-consuming processes. Depending on the

configured baseband settings, the calculation time for the baseband signal can be

longer than the VISA timeout setting. Thus, if you activate the baseband and wait for

completion with *OPC?, a timeout could occur before the calculation is finished and

you do not receive the returned “1”.

For time-consuming baseband calculations and ARB waveform loading operations, poll

the baseband progress with the following command:

SCPI query: SOUR:BB:PROG:MCOD?

This query returns a value between 0 and 100 that indicates the current calculation

progress. Similar to a progress bar, “0” means 0 % of the calculation is completed and

“100” means 100 % is completed, i.e. the calculation is finished.

Poll the baseband progress periodically until “100” is returned.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 14

Example – loop method:

 Activate an LTE baseband signal using the SCPI command:
SOUR:BB:EUTR:STAT ON

 Use a loop to

- Send the SCPI query SOUR:BB:PROG:MCOD?

The first call should not occur too early! If the calculation has not yet

started, the returned value will be also 100. The first call should occur

some milliseconds after the STAT ON command
3
.

- Evaluate the response:

o If the returned value is < 100, continue polling.

o If the returned value is 100, leave the loop, i.e. stop polling.

- Apply a delay function (non-busy wait).

 Send an *OPC? query.

After the calculation has completed, the instrument requires little additional

time to settle. The *OPC? query guarantees actual command completion.

Polling the baseband progress in a loop is simple and failsafe. It is thus the

recommended method used to wait for time-consuming baseband calculations and

ARB waveform loading operations.

See section 4.2.2 for a more detailed description of the loop method and the timer

method.

Further synchronization methods can be found in references [1] (search for keyword

“preventing overlapping execution”) and [3].

4.2.4 Summary

4.2.4.1 Synchronization Commands

Use the *OPC? query to wait for commands that take little or moderate time to

complete. Since the majority of operations are fast, this query should be used in most

cases (where appropriate).

 Pro: *OPC? is very simple to use.

 Cons: *OPC? can run into a timeout and thus can not be used to wait for time-

consuming operations. *OPC? blocks the test program.

Use the SOUR:BB:PROG:MCOD? query in a loop (with delay function) to wait for time-

consuming baseband calculations and ARB waveform loading operations.

 Pros: This method avoids timeouts and does not block the test program.

 Con: The method is limited to baseband processes.

Use the *CLS and *OPC commands and afterwards use the *ESR? query in a loop

(with delay function) to wait for time-consuming operations.

 Pros: This method avoids timeouts and does not block the test program.

 Con: The method is not as straightforward as the other synchronization

methods.

3
 Use the latest firmware release on your instrument.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 15

4.2.4.2 Polling Methods

For polling the baseband progress (using SOUR:BB:PROG:MCOD?) or the event

status register (using *ESR?), there are two methods: the loop method and the timer

method.

Loop with delay function:

 Pro: This method is very simple to implement and is failsafe.

 Cons: Other (not interdependent) commands cannot be sent to the instrument

while polling, since the test program is “trapped” in the loop. Communication

with other instruments is also not possible in the meantime
4
.

Repetitive timer:

 Pro: The communication with the instrument and other instruments is not

blocked while polling.

 Con: This method is more difficult to implement (depending on the

programming language used).

4.3 Synchronization of Multiple Instruments

Often, automated test programs control not only a single signal generator but all

instruments of a test setup. In this case, it is important to synchronize the different

instruments such as generators, spectrum analyzers and power meters to ensure

correct measurements results.

4.3.1 Settling of Test Signal

For example, the test setup comprises a signal generator that provides a test signal to

a device under test (DUT) and a spectrum analyzer that analyzes the output of the

DUT. Both instruments are configured by the same test program.

You can configure general instrument settings (such as RF frequency or trigger

settings) sequentially or in parallel for both instruments.

It must be assured that the test signal has settled before the measurement is started

on the spectrum analyzer. Configure and activate the test signal and finally send an

*OPC? query. Wait for the response. After the generator has confirmed command

completion, the test signal is ready for operation and you can (remotely) start the

measurement.

If you do not synchronize the instruments, the generator may still be calculating the

test signal while the spectrum analyzer already starts measuring. Obviously, this will

lead to wrong results.

4
 It is possible to overcome these limitations using a sophisticated technique called multithreading. This

technique is not easy to implement and is only recommended for programming experts.

Command Synchronization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 16

4.3.2 Generators in Master-Slave Mode

For example, the test setup comprises several signal generators (e.g. several

R&S
®
SMBV100A) in a master-slave configuration. In this setup, one generator acts as

master instrument and feeds synchronization signals to the other generator(s), which

act as slave instruments. The master-slave configuration provides coupling of the

basebands via a common clock and trigger signal, which assures perfect

synchronization of the instruments. Furthermore, the RF sections can be coupled via a

common local oscillator signal, which enables phase-coherent signal generation.

Please see application note “Time Synchronous Signals with Multiple R&S
®
SMBV100A

Vector Signal Generators ” (reference [9]) for detailed information on the master-slave

mode.

The master instrument must be configured prior to the slave instruments. Configure the

master instrument first and make sure that the instrument has settled using the *OPC?

query. Then configure the slave instruments. Reference [9] provides a complete code

example that shows how to remote control the master-slave setup.

If you do not synchronize the master with the slave instruments, it can lead to error

messages at the slave instruments.

Error Queries

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 17

5 Error Queries
Querying for errors is important and should be done regularly during the program run.

Especially during development of the automated test program and/or the test setup,

you should frequently send error queries to detect errors promptly. Also, do not leave

out error queries in time-critical applications to save time. At least query for errors at

the beginning and the end of the test run. At the beginning, you should also read out

static errors from the instrument (section 3.3).

The supported error queries are summarized in the following table:

Error queries

Query Description

SYST:ERR? Queries the last entry in the error queue and deletes it

SYST:ERR:CODE? Like SYST:ERR? but returns only the error number

SYST:ERR:ALL? Queries all entries in the error queue and deletes them

SYST:ERR:CODE:ALL? Like SYST:ERR:ALL? but returns only the error number

SYST:ERR:COUNT? Queries the number of entries in the error queue

SYST:SERR? Queries static errors

5.1 Query Error Queue

During the test program, regularly query for errors using the following command in a

loop:

SCPI query: SYST:ERR?

This command queries the last entry in the error queue and deletes it. Use this

command in a loop until the response is 0, “No error” (see example in section 8).

If errors have occurred, the error messages are returned. The test program should

then react appropriately, e.g. by aborting the test run and displaying the received error

message. If no errors have occurred since the last error query, the response is 0, “No

error”. Be aware that the instrument sometimes writes more than one error message

into the error queue in response to a single command.

Therefore, as a general rule, use the SYST:ERR? command in a loop to query for

errors. To prevent endless looping, it is advisable to end the loop programmatically

after a specified number of iterations, e.g. by using a counter.

Error Queries

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 18

Note that the command SYST:ERR:ALL? queries and deletes all entries in the error

queue at once. The response to this query may thus become long. If you have not

reserved enough receive buffer in your test program, this will generate a further error

(“Query interrupted”). In contrast, the SYST:ERR? query has the advantage that it

requires less buffer size, but it must be used in a loop to read out the whole error

queue.

5.2 Query Static Errors

Static errors indicate critical instrument errors. A static error would occur, for example,

if the instrument is configured to work with an external reference signal which is not

connected. Note that there is a difference between static errors and normal

(temporary) errors. Static errors are permanent error messages and are not deleted

after readout using the associated query:

SCPI query: SYST:SERR?

It is important to query the instrument for static errors at the start of the test program.

During the program run, if you query the instrument for static errors with SYST:SERR?,

be aware that this query returns only static errors that are currently present. Temporary

error messages will not be reported. They are listed in the error queue and must be

read out using the SYST:ERR? query.

Example:

We provoke a static error by disconnecting the external reference signal and a

temporary error by setting a RF frequency of 9 GHz on a 6 GHz instrument. The

responses of the two different error queries are as follows:

whereas

Speed Optimization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 19

6 Speed Optimization
In the following we describe how you can optimize the speed of your automated test

program and save up to seconds in execution time.

6.1 Settings Configuration

If you activate the baseband, the signal generator will start to calculate the baseband

signal. Depending on the configured settings, the calculation can take up to several

seconds. Now, if you send several commands to configure the signal, the instrument

will recalculate the signal. In fact, the instrument will do a recalculation each time it

receives a new command to adopt to the altered settings. As a result, the time it takes

to execute all commands will be unnecessarily lengthened by the recalculations.

For this reason, configure the baseband settings while the baseband is deactivated.

This saves calculation time. For the same reason, configure e.g. the fader settings

while fading is deactivated.

Note that for signal generators, all commands for the digital standards are available

(provided the corresponding option is installed on the instrument), even if the standard

is not yet activated, i.e. if the “State” is “Off”. It is not necessary to activate the standard

before sending standard-related commands. This is even disadvantageous. Note that

spectrum analyzers behave differently in this respect. (For spectrum analyzers, you

must first activate the standard before the standard-related commands are available.)

As a general rule, make all the required settings before you activate the baseband (or

ARB, fader, etc.).

If you want to send several commands, use a command sequence similar to the

following example:

Command sequence: SOUR:BB:EUTR:STAT OFF

 SOUR:BB:EUTR:DUPL TDD

...

...

 SOUR:BB:EUTR:DL:SUBF5:ALL2:MOD QPSK

SOUR:BB:EUTR:STAT ON

*OPC?

If you then want to send only a single command to change a particular setting, you do

not necessarily have to go back to the deactivated state. You can then send the

command while the “State” is still “On”.

Command line: SOUR:BB:EUTR:DL:SUBF5:ALL2:MOD QAM16; *OPC?

Speed Optimization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 20

6.2 Synchronization

Choose the optimum synchronization method for each operation/command (see

section 4.2.4). In contrast to fixed delays, this assures that waiting times are reduced to

a minimum.

Moreover, while waiting for the completion of a command, other (not interdependent)

actions can be executed. For example, while the signal generator is busy calculating

the baseband signal, another instrument in the test setup, e.g. a spectrum analyzer,

can be configured in the meantime by the same test program:

 Activate the baseband of the signal generator.

 Use the waiting period to do something else, i.e. configure the spectrum

analyzer.

 Poll the baseband progress in a loop until “100” is returned (see section 4.2.3)

to verify that the signal generator is ready for operation.

6.3 Command Blocks

To shorten execution time, do not send an operation complete and an error query after

each command. Instead, group the commands into logical blocks and send the queries

just once after the block.

Command sequence: SOURce1:FREQ 1 GHz

 SOURce2:FREQ 3 GHz

 SOURce1:POW -10 dBm

 SOURce2:POW -30 dBm

 *OPC?

 SYST:ERR? (loop until response is 0, “No error”)

6.4 Waveforms

6.4.1 Saving Transfer Time

Avoid unnecessary waveform transfers. If the same waveform is needed for several

program runs, create and transfer the waveform to the instrument in the first run only.

Save it under a unique name in the default directory. For all subsequent runs, use the

following command to query the instrument as to whether the waveform exists:

SCPI query: SOUR:BB:ARB:WAV:CAT?

This command returns the names of all waveform files in the default directory.

If the waveform exists, load it directly into the ARB. Delete the waveform if it is not

required anymore for future program runs (see section 7.2).

This method saves transfer time if the same waveform is required multiple times.

Speed Optimization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 21

The same method can also be applied to RF lists as well as to control and data lists,

etc., using the respective SCPI queries (see [1] – search for keyword “catalog?”).

6.4.2 Saving Loading Time

Avoid unnecessary waveform loading operations. If the same waveforms are needed

for several program runs, create and transfer the waveforms to the instrument and

create a multisegment waveform offline. Reference [1] explains in detail how to create

such a multisegment waveform on the instrument (search for keyword “multi

segment”). The multisegment waveform contains the different waveforms needed

during the test run. Each waveform represents one segment of the multisegment

waveform. Save it under a unique name in the default directory. For all runs, query the

instrument if the multisegment waveform exists and load it into the ARB. The individual

segments can be played back during the test run as needed. Note that changing from

one waveform of the multisegment waveform to another does not require a loading

operation. The delays normally caused by loading operations are omitted, which

makes is possible to switch between waveforms very rapidly.

This method saves loading time if the same set of waveforms is required multiple

times.

Please see references [5] and [2] for details and evaluate whether this method is

suitable for your application.

6.5 GUI Update

Updating the graphical user interface (GUI) of the instrument consumes computing

resources. However, in automated test systems a graphical display is usually not

needed.

Therefore, to increase the setting speed, switch off the GUI update with the following

command.

SCPI command: SYST:DISP:UPD OFF

6.6 GPIB versus LAN

The communication with the instrument can be established via a GPIB or LAN (VXI-11)

connection.

Speed Optimization

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 22

A GPIB connection has less latency than a LAN connection and is thus the faster

interface for sending control commands. For example, an identification query (*IDN?) is

faster over GPIB (including receiving the response) than over LAN (VXI-11) [6]. The

time it takes to send a command over LAN depends on several factors, such as the

network infrastructure and the speed of the LAN interfaces. A LAN connection is,

however, beneficial when transferring large amounts of data to the instrument. For

example, when transferring large waveforms (using the MMEM commands), the

transfer rate is higher over LAN than it is over GPIB [6]. Please see application note

“Connectivity of Rohde & Schwarz Signal Generators” (reference [6]) for a detailed

examination.

If you are intending to send large amounts of data (e.g. large waveforms) to the

instrument, use a LAN connection to profit from the high data transfer rate. Otherwise,

the GPIB connection is preferable in terms of speed.

Waveform Transfer & Loading

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 23

7 Waveform Transfer & Loading

7.1 Waveform Transfer

At first, set the default path to “D:\” for Windows-based instruments such as the

R&S
®
SMU using the following commands:

SCPI sequence: MMEM:MSIS 'D:'

 MMEM:CDIR '\'

Always store your data on the instrument’s D: drive and not on the C: drive. This

ensures that your data is not erased when performing a firmware update or recovery.

Set the default path to “/var/user” or “/hdd” for Linux-based instruments such as the

R&S
®
SMBV using the following command:

SCPI command: MMEM:CDIR '/hdd/'

Data stored on the “/var/user” or “/hdd” directories is not erased when performing a

firmware update or recovery.

A waveform file contains ASCII text (i.e. mandatory and optional information tags

forming the waveform header) and binary data (I/Q data). To transfer the waveform to

the instrument, send the complete content of the waveform file as a binary data block

using the following command:

SCPI command: MMEM:DATA '<filename>',

 #<number><length><binary data bytes>

<length> indicates the length in bytes of the binary data block.

<number> indicates how many digits <length> has.

Example: MMEM:DATA 'test.wv', #267<binary data bytes>

(See reference [1] for a detailed description of the command structure – search for

keyword “mmem:data”.)

This command creates a new “test.wv” file or replaces an existing “test.wv” file.

Note that the command SOUR:BB:ARB:WAV:DATA can also be used to transfer

binary data to the instrument. However, this command does not replace the file but

appends the transferred data to the file.

Waveform Transfer & Loading

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 24

In order to ensure trouble-free transmission of the binary data over an IEC/IEEE bus

(GPIB), configure the instrument to use the IEC/IEEE bus delimiter “end or identify”

(EOI) instead of the standard delimiter “line feed” (LF). This is necessary, because a

LF character can occur randomly in the binary data stream and the instrument would

terminate data reception at the first occurrence of this character. Therefore, send the

following command before starting the data transfer.

SCPI command: SYST:COMM:GPIB:LTER EOI

Now, send the binary data to the instrument using the MMEM:DATA command. If you

want to transfer larger amounts of binary data, it is advisable to send the data block-by-

block as described in detail in reference [4]. Transfer the binary data block-by-block

and terminate (only) the last block with an EOI. The EOI indicates the end of data

transfer over the IEC/IEEE bus.

After the transfer, use the following command to set the instrument back to the

standard IEC/IEEE bus delimiter:

SCPI command: SYST:COMM:GPIB:LTER STAN

See reference [4] for a very detailed description of waveform generation and transfer.

This application note also includes helpful code examples that show how to generate

waveform files externally on a PC and transfer them to the instrument.

7.2 Waveform Loading

After the waveform file has been transferred to the instrument’s hard drive, load the

waveform into the arbitrary waveform generator (ARB) using the following command:

SCPI command: SOUR:BB:ARB:WAV:SEL '<filename>'

Wait for command completion with *OPC?.

Activate the ARB to playback the waveform.

SCPI command: SOUR:BB:ARB:STAT ON

Wait for command completion. The synchronization method to use (see section 4.2.4)

depends on the waveform size.

If the waveform file is not needed anymore (also not in the future), you should delete

the file to free memory on the hard drive using the following command:

SCPI command: MMEM:DEL '<filename>'

Example Script

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 25

8 Example Script
In the following we provide a simple example script. This basic script is written in

MATLAB code and uses functions of the R&S MATLAB Toolkit (application note

1GP60, [7]).

Function rs_send_command sends a SCPI command to the instrument.

Function rs_send_query sends a SCPI query to the instrument.

The example script demonstrates the recommended program structure. Focus on the

comments (in gray) and the actual SCPI commands (in blue).

Script

% use VISA interface from National Instruments to connect via

TCP/IP
[status, InstrObject] = rs_connect ('visa', 'ni',

'TCPIP::smbv100a100018::INSTR');
if (status<1)

disp (['*** Return status from rs_connect() is : '

num2str(status)]);
 clear;
 return;
end

% query instrument info
[status, Result] = rs_send_query (InstrObject, '*IDN?');
if (status<0), return; end
disp (Result);

[status, Result] = rs_send_query (InstrObject, '*OPT?');
if (status<0), return; end
disp (Result);

% create defined conditions
status = rs_send_command (InstrObject,'*RST; *CLS');
if (status<0), return; end

[status, Result] = rs_send_query (InstrObject, '*OPC?');
if (status<0 || Result(1)~='1'), return; end

% query for static errors

[status, Result] = rs_send_query (InstrObject, 'SYST:SERR?');
if (status<0 || Result(1)~='0')
 disp (['*** Instrument error : ' Result]);
 return;
end

% configure and turn on RF signal
status = rs_send_command (InstrObject,'FREQ 2 GHz');
if (status<0), return; end

Example Script

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 26

status = rs_send_command (InstrObject,'POW -10 dBm');
if (status<0), return; end

[status, Result]= rs_send_query (InstrObject, 'OUTP ON; *OPC?');
if (status<0 || Result(1)~='1'), return; end

% query for errors in a loop

% see 'Query Error Function' below
Err = query_error (InstrObject);
if (Err == 1), return; end % error occurred

% prepare baseband
status = rs_send_command (InstrObject,'BB:EUTR:STAT OFF');
if (status<0), return; end

status = rs_send_command (InstrObject,'BB:EUTR:PRES');
if (status<0), return; end

% configure LTE baseband signal
status = rs_send_command (InstrObject,'BB:EUTR:SLEN 40');
if (status<0), return; end

[status, Result] = rs_send_query (InstrObject, '*OPC?');
if (status<0 || Result(1)~='1'), return; end

% query for errors in a loop

% see 'Query Error Function' below
Err = query_error (InstrObject);
if (Err == 1), return; end % error occurred

% activate baseband
status = rs_send_command (InstrObject,'BB:EUTR:STAT ON');
if (status<0), return; end

% create a repetitive timer with 5 s interval

% and a start delay of 1 s
t = timer('TimerFcn',{@poll_progress, InstrObject}, 'Period',

5.0, 'ExecutionMode', 'fixedRate', 'StartDelay', 1.0);

% start timer, i.e. begin polling of baseband progress

% see 'Timer Function' below
start (t);

% we run the following commands in an auxiliary loop (dummy) to

ease error handling

while (true)

% configure and activate AWGN settings while waiting
% don't send an *OPC? while waiting, because this would

% also apply to the BB:EUTR:STAT ON command and cause a

% timeout
status = rs_send_command (InstrObject,'AWGN:MODE ADD');
if (status<0), break; end

Example Script

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 27

status = rs_send_command (InstrObject,'AWGN:BWID 10 MHz');
if (status<0), break; end

status = rs_send_command (InstrObject,'AWGN:BWID:RAT 2');
if (status<0), break; end

status = rs_send_command (InstrObject,'AWGN:STAT ON');
if (status<0), break; end

% query for errors - see 'Query Error Function' below

Err = query_error (InstrObject);
if (Err == 1), break; end % error occurred

% at this point in the code you can continue to send

% (not interdependent) commands while waiting for the

% baseband calculation to complete, for example, you can

% configure another instrument if required/desired

% wait until baseband calculation is finished
% (if the calculation is already finished, this loop won't

% cause a delay)
while (isvalid(t) == logical (1))

 pause(5);
end

% check status
[status, Result] = rs_send_query (InstrObject, '*OPC?');
if (status<0 || Result(1)~='1')

Err = 1;

break;

end

% query for errors - see 'Query Error Function' below

Err = query_error (InstrObject);
if (Err == 1), break; end % error occurred

break

end % end auxiliary while loop

% error evaluation

if (Err == 1)

% check if timer exists and clear timer

if (isvalid(t) == logical (1))

stop (t);

delete (t);

end

end

% clean up and end
if (Err == 0), disp ('Done.'); end
clear;
return;

Example Script

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 28

Timer function

function poll_progress(t, event, InstrObject)

% poll the baseband progress
[status, Result] = rs_send_query (InstrObject,

'SOUR:BB:PROG:MCOD?');

disp (['baseband progress: ', Result]);

if (str2num(Result) == 100)
 stop (t); % stop timer
 delete (t);
end

return;

Query error function

function [Err] = query_error (InstrObject)

Result = '1';
Counter = 0;
Err = 0;

% query for errors in a loop until "0, No error" is returned
% and limit the number of iterations to 100
while (Result(1) ~= '0' && Counter < 100)

 [status, Result] = rs_send_query (InstrObject, 'SYST:ERR?');
 if (status<0)
 disp('*** Error occurred');
 Err = 1;
 break;
 end
 if (Result(1)~='0')
 disp (['*** Instrument Error: ' Result]);
 Err = 1;
 end

Counter = Counter + 1;

end

return;

Programming Lists and Sweeps

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 29

9 Programming Lists and Sweeps

9.1 RF List Mode

In RF list mode, the RF signal is generated on the basis of a predefined list which

contains frequency and level value pairs (see [1] for details – search for keyword “list

mode”). The list entries are processed step-by-step. The RF list mode enables fast

frequency and/or level hopping.

Use a command sequence similar to the following to create or modify a RF list

(example filename ‘testlist’) and to activate the list mode:

Command sequence: SOUR:LIST:SEL '/hdd/testlist'

 for Linux-based instruments.
 'D:\testlist'

 for Windows-based instruments.
 SOUR:LIST:FREQ 2 GHz, 4 GHz, 6 GHz, ...

SOUR:LIST:POW 0 dBm, -10 dBm, 10 dBm, ...

SOUR:LIST:DWEL 3 ms

SOUR:LIST:MODE AUTO

SOUR:LIST:TRIG:SOUR AUTO

OUTP ON

*OPC?

SOUR:LIST:LEAR

*OPC?

SOUR:FREQ:MODE LIST

In list mode, the instrument operates with predetermined hardware settings to achieve

the fast frequency/level switching. The internal hardware settings (such as the step

attenuator settings) required to generate the specified frequencies/levels in the RF list

need to be determined and saved along with the selected list before the list mode can

be used. The procedure for determining and saving the required hardware settings for

a particular list is called “list learning”. Use the command SOUR:LIST:LEAR to initiate

list learning for the selected list. Later, during list mode, the saved hardware settings

(one hardware setting per frequency-level pair) are recalled.

Note that during list learning, all hardware settings including the modulation and RF

states are saved. Therefore, turn on the RF output (using OUTP ON) and the digital

modulation (using baseband STAT ON) if required before initiating list learning.

As a general rule, make all desired instrument settings first, then learn the list and

finally activate the list mode.

Use a synchronization method (e.g. *OPC?) to ensure that the hardware has settled

before learning the list. The list learning itself can take some time, especially if the RF

list has many entries. Therefore, before you activate the list mode, wait until list

learning has finished by using an appropriate synchronization method (see section

4.2.4).

Programming Lists and Sweeps

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 30

Always learn the list before activating the list mode, even if the list already exists and

has been learned already (e.g. in previous program runs). The SOUR:LIST:LEAR

command is important to ensure that the hardware settings used are always up-to-

date. Temperature changes have an influence on the output frequency and level. Wait

with the list learning until the instrument has warmed up. List learning is important for

adapting to the current conditions and ensuring frequency and level accuracy.

You can deactivate the list mode using the following command:

SCPI command: SOUR:FREQ:MODE CW

9.2 Sweep Mode

Most of the signal generators offer three different sweep types – frequency sweep,

level sweep and LF sweep – that can be activated alternatively. For each sweep type,

different sweep modes (continuous, individual, step-by-step) and trigger modes

(automatic, internal, external) can be selected.

Use a command sequence similar to the following to set up and activate a frequency

sweep:

Command sequence: SOUR:FREQ:CENTER 200 MHz

 SOUR:FREQ:SPAN 300 MHz

SOUR:SWEEP:SPACING LIN

SOUR:SWEEP:STEP:LIN 20 MHz

SOUR:SWEEP:DWELL 12 ms

TRIG:FSWEEP:SOUR SINGLE

SOUR:SWEEP:MODE AUTO

SOUR:FREQ:MODE SWEEP

*OPC?

SOUR:SWEEP:EXECUTE

In the example above, a single sweep is performed which is triggered by the execute

command. If you want to wait until the sweep is finished, you cannot use the *OPC?

query or the *OPC command for this purpose, since they refer to the completion of the

execute command (i.e. the action of starting the sweep) but not to the completion of

the sweep. This means that if you send a *OPC? query after the execute command,

the instrument would respond with a “1” as soon as the sweep has started. In general,

for signal generators the operation complete commands never indicate the completion

of the sweep itself but only the completion of the command processing. If you want to

wait for the sweep to be completed, you can repetitively read out the current RF

frequency using the following query:

SCPI query: SOUR:FREQ?

The sweep is completed when the specified stop frequency has been returned.

It is advisable to switch off the GUI update (with SYST:DISP:UPD OFF, section 6.5) for

optimum sweep performance especially when using short dwell times.

Miscellaneous Tips

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 31

10 Miscellaneous Tips

10.1 Finding and Recording SCPI Commands

10.1.1 Instrument Help

A very easy and convenient way to find the corresponding SCPI command for a

particular setting parameter or action is to use the instrument’s comprehensive online

help.

In manual operation, select a particular setting parameter, then press the yellow “Help”

button on the front panel of the instrument. This button opens a browser window

containing a context-sensitive description of the selected parameter. At the bottom of

this page you will find the corresponding SCPI command.

In manual operation via remote desktop or VNC viewer, select a particular setting

parameter and then press the “F1” key on your keyboard to open the instrument’s

online help.

Command notation

In the online help, the commands are given in a specific syntax: Upper- and lowercase

notation serves to distinguish the long and the short notation form. Uppercase letters

indicate the short form, whereas lowercase letters indicate the long form. Optional

keywords are indicated with square brackets [].

Example: [SOURce]:LFOutput:VOLTage

You can use the short notation form and skip the optional keywords; e.g. instead of

“SOURCE:LFOUTPUT:VOLTAGE” you can write “LFO:VOLT”. See reference [1] for

further details (search for keyword “syntax”).

Miscellaneous Tips

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 32

10.1.2 SCPI Sequence Recording

The R&S
®
SMW200A vector signal generator offers SCPI recording. This feature

makes it possible to “write” remote control code the fast and easy way. The user

makes the wanted settings manually on the instrument and the R&S
®
SMW200A

records the corresponding SCPI commands. This SCPI sequence can then be saved

to a file and exported either as a script in ASCII format or as ready-to-use source code.

The R&S
®
SMW200A can generate source code for the most common programming

languages such as C and MATLAB. Also user-defined code syntax is supported.

Please see application note “SCPI-Recorder Test Automation on a Fingertip ”

(reference [10]) for detailed information on the SCPI recording feature.

SCPI recording speeds up remote code development enormously and is thus a great

benefit for you. However, make sure to revise the generated code according to the

programming tips given in this application note, e.g. with respect to synchronization

and error inquiry.

Miscellaneous Tips

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 33

10.2 Instrument Simulation for Testing SCPI Commands

You have the possibility to develop and test (part of) your automated test program

without an instrument, i.e. real hardware. The instrument firmware can be installed on

a computer or virtual machine and serve as instrument simulator.

The firmware of Windows-based instruments (e.g. R&S
®
SMU200A, R&S

®
AMU200A,

R&S
®
SMATE200A, R&S

®
SMJ100A, R&S

®
AFQ100A) can be installed on a Windows

machine. The firmware can be installed either on a PC or on a virtual machine such as

Microsoft Virtual PC. The firmware is downloadable from the Rohde & Schwarz

website.

The firmware of Linux-based instruments (e.g. R&S
®
SMW200A, R&S

®
SMBV100A,

R&S
®
SMA100A, R&S

®
SMB100A, R&S

®
SMC100A, R&S

®
SMF100A) can not be

installed directly on a Windows or Linux machine. Special builds of this instrument

firmware are supplied on request for installation on a Windows machine. Please

contact Rohde & Schwarz customer support in Europe (see last page for contact

details).

Install the firmware on a dedicated PC (physical computer) or virtual computer. The

installation procedure is the same as on the instrument. Install only one instrument

firmware per computer. You can now connect remotely to this virtual instrument via the

IP address of the computer to test your automated test program. This means that

instead of connecting to a real, physical instrument, you connect to this computer. In

other words, instead of using the instrument’s IP address in your code, you use the IP

address of the computer. You can also look up this IP address in the simulated

instrument GUI (Setup Remote Settings).

Make sure that you deactivate the Windows firewall on the computer. Otherwise you

may not be able to connect to the virtual instrument.

Miscellaneous Tips

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 34

The simulation has the advantage that all instrument options are available for testing.

You can start programming right away even if you do not have access to the signal

generator yet. For users who do not own a Rohde & Schwarz signal generator, the

simulation is a good way to get an impression about the look-and-feel of the

instrument.

After testing your automated test program (or parts of it) with the virtual instrument, the

next step is to test the written code with real hardware, i.e. real instrument. This is

crucial, since the simulation cannot emulate the instrument behavior to the full extent.

10.3 Query Your Instrument

You can turn commands that set a parameter into a query by adding a question mark

to the setting command
5
.

Examples:

SCPI command: SOUR:FREQ 1.2 GHz

SCPI query: SOUR:FREQ?

Response: 1.2E9

SCPI command: SOUR:LIST:FREQ 1.2 GHz, 2.0 GHz, 1.5 GHz

SCPI query: SOUR:LIST:FREQ? MAX

Response: 2.0E9

Numeric values are returned without units. Physical quantities are referred to SI units

or to the units set using the UNIT commands. Truth values (Boolean values) are

returned as 0 for OFF and 1 for ON. Character data (text) is returned in the short

notation form.

Examples:

SCPI command: HCOP:DEV:COL ON

SCPI query: HCOP:DEV:COL?

Response: 1

SCPI command: HCOP:PAGE:ORI LANDscape

SCPI query: HCOP:PAGE:ORI?

Response: LAND

5
 Unless explicitly specified otherwise in the operating manual.

Miscellaneous Tips

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 35

10.4 Code Debugging

If you need to debug your code, it is helpful to insert error queries at multiple positions

in the code to quickly find the source of error (e.g. a wrongly spelled command). Also,

send *OPC? after each command – except for very time-consuming operations – and

check if a “1” is returned (e.g. display the “1” on the screen for visual control).

You can also use dedicated tools for debugging. For example, special debug features

of your programming environment allow you to step through the individual code lines

manually. These debugging tools can be used to identify SCPI commands in the code

that produce an error on the instrument (e.g. because a level value that is too high has

been sent to the instrument). Another debugging tool is the NI Spy tool from National

Instruments; it allows you to see what information is actually sent over the VISA

interface. For example, this tool can be used to check if the SCPI command is indeed

sent to the right instrument or accidentally to another instrument of the test setup. Also,

codes often contain SCPI commands that contain values which are not predefined but

are calculated during the run. These values are included in the SCPI command by

means of e.g. %f in C codes or variables in MATLAB codes. Using NI Spy, you can

check if the resulting SCPI command sent to the instrument is indeed what it is

supposed to be or if, for example, spaces are missing or the calculated value is wrong

(e.g. wrong dimension: Hz GHz).

Further Reading

1GP79_1E Rohde & Schwarz Top Ten SCPI Programming Tips for Signal Generators 36

11 Further Reading
This application note is not intended to provide detailed information about instrument

remote control in general. However, there are several application notes available

dealing with remote control basics and programming. For example, the following

application notes are very useful:

 1GP72 (reference [6])

 1GP62 (reference [4])

 1GP60 (reference [7])

 1EF62 (reference [3])

A tutorial on SCPI programming is given in the Rohde & Schwarz book “Automatic

Measurement Control” by John M. Pieper.

Very useful and comprehensive information can be found in the “Remote Control

Basics” section of reference [1].

12 References
[1] Rohde & Schwarz, R&S

®
SMU200A Vector Signal Generator Operating

Manual.

The manual can be downloaded from the Rohde & Schwarz website:

www.rohde-schwarz.com/product/SMU200A

[2] Rohde & Schwarz Application Note: “Speeding up production test with the

R&S
®
SMATE200A” (1GP63)

[3] Rohde & Schwarz Application Note: “Hints and Tricks for Remote Control of

Spectrum and Network Analyzers” (1EF62)

[4] Rohde & Schwarz Application Note: “Importing Data in ARB, Custom Digital

Modulation and RF List Mode” (1GP62)

[5] Rohde & Schwarz Application Note: “Arbitrary Waveform Sequencing with

Rohde & Schwarz Vector Signal Generators” (1GP53)

[6] Rohde & Schwarz Application Note: “Connectivity of Rohde & Schwarz Signal

Generators” (1GP72)

[7] Rohde & Schwarz Application Note: “R&S MATLAB Toolkit for Signal

Generators and Power Sensors” (1GP60)

[8] Rohde & Schwarz Book: “Automatic Measurement Control” by John M. Pieper

(ISBN: 978-3-939837-02-2)

[9] Rohde & Schwarz Application Note: “Time Synchronous Signals with Multiple

R&S
®
SMBV100A Vector Signal Generators ” (1GP84)

[10] Rohde & Schwarz Application Note: “SCPI-Recorder Test Automation on a

Fingertip ” (1GP98)

http://www.rohde-schwarz.com/product/SMU200A

 About Rohde & Schwarz

Rohde & Schwarz is an independent group

of companies specializing in electronics. It is

a leading supplier of solutions in the fields of

test and measurement, broadcasting,

radiomonitoring and radiolocation, as well as

secure communications. Established more

than 75 years ago, Rohde & Schwarz has a

global presence and a dedicated service

network in over 70 countries. Company

headquarters are in Munich, Germany.

Environmental commitment

● Energy-efficient products

● Continuous improvement in

environmental sustainability
● ISO 14001-certified environmental

management system

Regional contact

Europe, Africa, Middle East

+49 89 4129 12345

customersupport@rohde-schwarz.com

North America

1-888-TEST-RSA (1-888-837-8772)

customer.support@rsa.rohde-schwarz.com

Latin America

+1-410-910-7988

customersupport.la@rohde-schwarz.com

Asia/Pacific

+65 65 13 04 88

customersupport.asia@rohde-schwarz.com

China

+86-800-810-8228 /+86-400-650-5896

customersupport.china@rohde-schwarz.com

This application note and the supplied

programs may only be used subject to the

conditions of use set forth in the download

area of the Rohde & Schwarz website.

R&S® is a registered trademark of Rohde & Schwarz
GmbH & Co. KG; Trade names are trademarks of the
owners.

Rohde & Schwarz GmbH & Co. KG

Mühldorfstraße 15 | D - 81671 München

Phone + 49 89 4129 - 0 | Fax + 49 89 4129 – 13777

www.rohde-schwarz.com

mailto:customersupport.asia@rohde-schwarz.com
mailto:customersupport.china@rohde-schwarz.com

