R&S High Speed Digital Cable Testing Solution 데이터 센터 용 고속 케이블과 커넥터에 대한 자동화 컴플라이언스 테스트 솔루션을 소개합니다!

Jaehyun Lee

Application Engineer / Product Manager Jan, 2025

ROHDE&SCHWARZ

Make ideas real

AGENDA

- IEEE Ethernet evolution and Demand for Cables
- Channel Testing with VNA
- Ethernet specification and QSFP
 Cable Examples
- R&S automated VNA solution

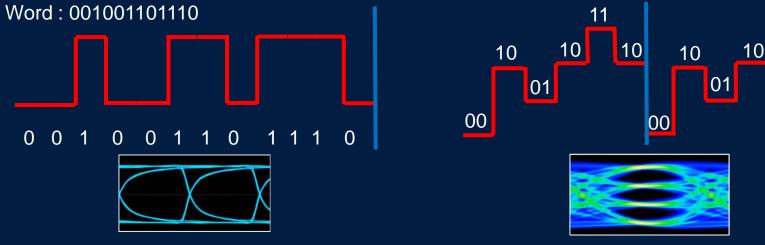
Challenges for Al-driven Data Centers For 800G / 1.6 T b/s Networking

PATH TO SINGLE LANE

Source : EthernetRoadmap 2023-Side1-Final-Feb1- (ethernetalliance.org)

Evolution of High-Speed Ethernet Standard

IEEE specification	Copper cables	Data rate (per Lane)	Modulati on	Symbol rate (per Lane)
802.3bj-2014 802.3by-2016	25GBASE-CR 100GBASE-CR4	25Gbps	NRZ	f _b = 25.785 Gbd
802.3cd-2018	50GBASE-CR1 100GBASE-CR2 200GBASE-CR4	50Gbps	PAM4	f _b = 26.565 Gbd
802.3ck-2022	100GBASE-CR1 200GBASE-CR2 400GBASE-CR4	100Gbps	PAM4	f _b = 53.125 Gbd
802.3df-2023	800GBASE-CR8	100Gbps	PAM4	f _b = 53.125 Gbd
802.3dj draft	200GBASE-CR1 400GBASE-CR2 800GBASE-CR4 1.6TBASE-CR8	200Gbps	PAM4	f _b = 106.25 Gbd

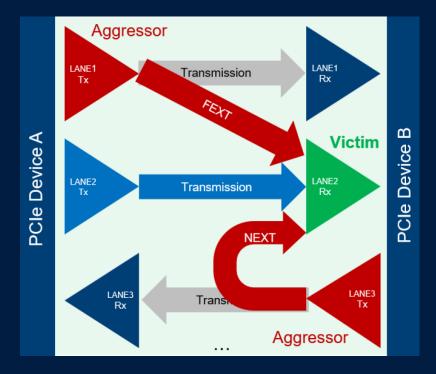


Moving from NRZ to PAM4 : More sensitive to Noise

PAM4 is implemented instead of NRZ to increase data rates. PAM4 transfers twice the content in the same amount of time.

10

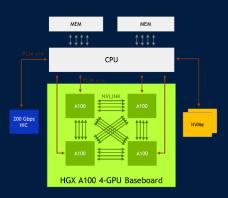
- ► This means PAM4 requires half the BW compared to NRZ.
- ► However, **SNR drops by 9.5db** which makes PAM4 more sensitive to Noise and Crosstalk



Moving from NRZ to PAM4 : More sensitive to Crosstalk

Multiple aggressors and higher crosstalk

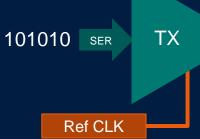
- Crosstalk:
 - Near end crosstalk: NEXT
 - Far end crosstalk: FEXT
- Multiple aggressors: power sum
 - power sum NEXT: **PSNEXT** or Multi-disturber NEXT: **MDNEXT**
 - Power sum FEXT: **PSFEXT** or Multi-disturber FEXT: **MDFEXT**



Why choose cable for high speed?

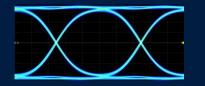
- Improved Signal Loss
- Less Crosstalk
- Lower EMI
- Fewer PCB Layers
- Thermal Management
- Better head dissipation compared to PCB traces

- Flexibility in design
- Easy to replace/upgrades
- Scalability and Future-Proofing
- Simplified Routing
- Reduces PCB Complexity

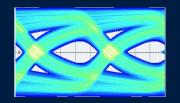


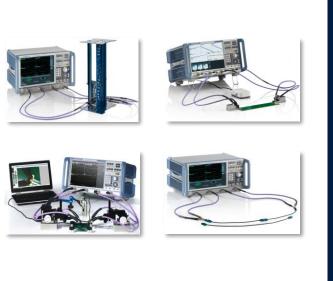
AGENDA

- IEEE Ethernet evolution and Demand for Cables
- Channel Testing with VNA
- Ethernet specification and QSFP
 Cable Examples
- R&S automated VNA solution


Channel Testing Simplified

Channel

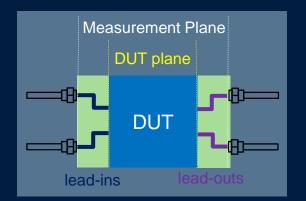




VNAs are almost exclusively used for characterizing the channel

R&S Vector Network Analyzer(VNA) Channel Test: PCBs and Interconnects

Channel Test Cases with R&S ZNB Vector Network Analyzer

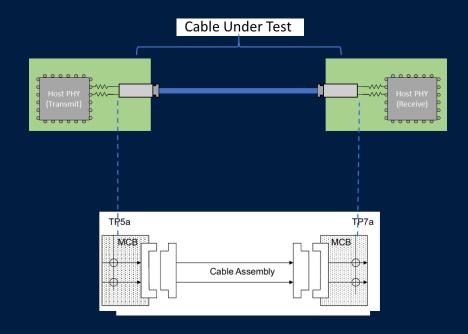

Signal Integrity Analysis of Channel

- Frequency Domain Analysis
 - Insertion Loss and Return Loss
 - Differential S-parameter / Crosstalk for Multilane
 - Delta-L 4.0 for PCB Characterization
 - Advanced De-embedding
- ► Time Domain analysis
 - TDR(Impedance) / Eye Diagram / Skew

De-embedding Requirements

- Easy and accurate test fixture characterization and de-embedding
- Guidance through "De-embedding Assistant"

PCIe 5.0 / 6.0 Cables compliance test case with De-embedding according to PCIe Specification


AGENDA

- IEEE Ethernet evolution and Demand for Cables
- Channel Testing with VNA
- Ethernet specification and QSFP Cable Examples
- R&S automated VNA solution

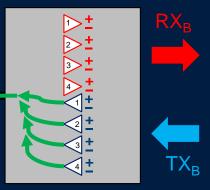
IEEE 802.3 Specification Requirements

- ► Compliance Parameters include:
 - Impedance Mask
 - Insertion Loss
 - Return Loss
 - Near-End Crosstalk (NEXT)
 - Far-End Crosstalk (FEXT)
 - Conversion Loss
 - Channel Operating Margin (COM)
 - Effective Return Loss (ERL)

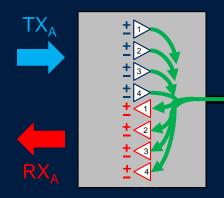
Testing Ethernet: Typical Module Form Factors


1x lane	4x lane	8x lane		
SFP+	QSFP(+/28/56)	QSFP-DD	OSFP	
	A contraction of the second se		a line	
1 TX / 1 RX Lane 10 Gbps	4 TX / 4 RX Lanes Per Lane Rates QSFP+ 10 Gbps QSFP28 25 Gbps QSFP56 50 Gbps	8 TX / 8 RX Lanes Being deployed for 802.3dj designs (200 Gbps per lane)		

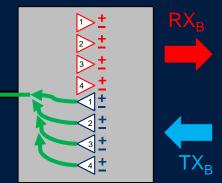
R&S®ZNrun Automated Solution for IEEE802.3 Ethernet Standards


Example: Testing a QSFP Cable

To fully characterize 1 RX port, <u>18 VNA ports</u> are needed


To fully characterize all RX ports (all on both sides), <u>32 VNA ports</u> are needed

Example: Testing a QSFP Cable

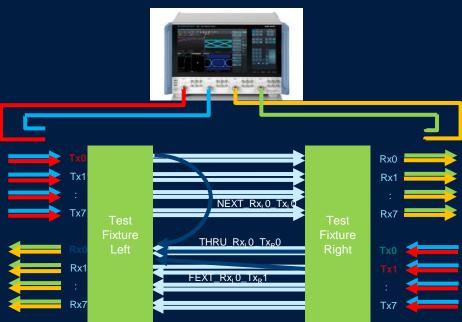


To fully characterize 4 RX ports (all on one side), 24 VNA ports are needed

Testing can be completed with as few as 4 ports, But this takes significantly longer to complete

Testing IEEE802.3 cables with VNA

Required Measurements:


- Insertion loss Sdd21
- Return loss Sdd11 and Sdd22
- NEXT
- FEXT

Testing with 4 port VNA:

Multiple 4-port measurements

Postprocessing:

- COM (Channel Operating Margin)
- ERL (Effective Return Loss)

Example IEEE802.3 CR8 cable

High-Speed Cable Test: IEEE802.3 Cable Types – DAC and AOL

Direct Attach Copper Cables (DAC): short distances, very economic

- ► purpose: connect switches, servers, and storage inside racks in data centers
- ► 2 types:

passive DAC cables (without signal conditioning): no re-timer in connector paddle card \rightarrow can be tested w. VNAs

active DAC cables (with signal conditioning): re-timer in connector paddle card
 → cannot be tested with VNAs

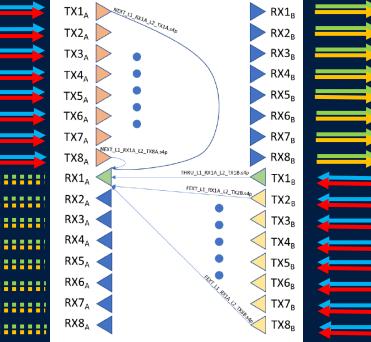
Active Optical Cables (AOL): longer distances

purpose: link switches, servers, and storage between different racks inside data centers

High-Speed Cable test: IEEE802.3 Symmetric cables

Symmetric Cable: e.g. QSFP-DD (CR8) to QSFP-DD (CR8):

- Majority of cables are symmetric
- Allows simplified test setup for THRU, NEXT, FEXT
 by flipping the cable once:
 - Connection #1: cable side A fixture A cable side B fixture B



.....

- Connection #2: cable side B – fixture A cable side A – fixture B

 \rightarrow Reduced number of ports: 16 + 32 = 48

AGENDA

- IEEE Ethernet evolution and Demand for Cables
- Channel Testing with VNA
- Ethernet specification and QSFP
 Cable Examples
- R&S automated VNA solution

Recommended Multiport Configuration For IEEE802.3 CR8 and CR4 cables

- Test port requirement
 - CR4 → 32 test ports
 - <u>CR8 \rightarrow 64 test ports.</u>

Reduced test port method

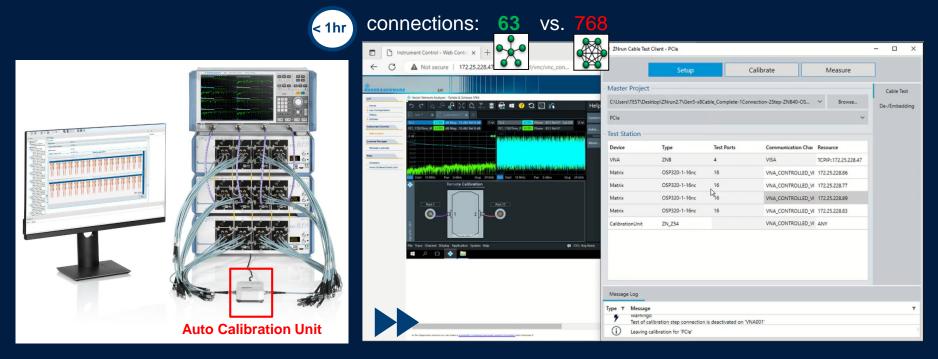
 For high-speed cables with the same form factor on both sides, some test ports can be reused, resulting in a reduced total number of required ports.


Efficient test setup

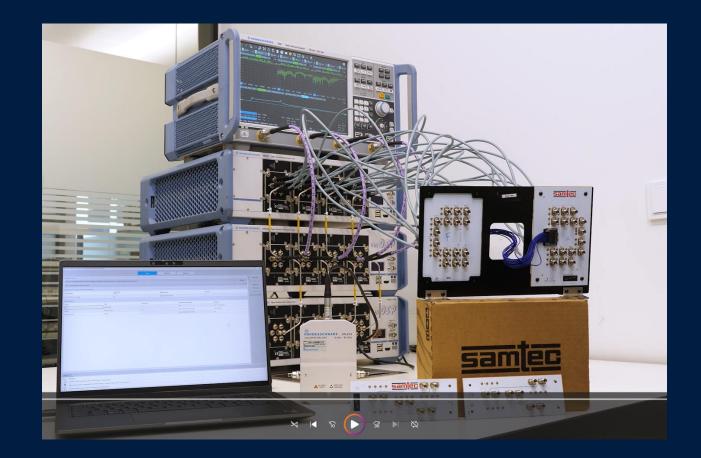
• The user only needs to unplug the cable under test once, flip it, and re-plug it into the test fixtures, eliminating the need for multiple coaxial cable reconnections during measurement.

Cable under test	R&S®OSP	
Form factor	Number of lanes	Number of ports
QSFP-DD to QSFP-DD, QSFP to QSFP	8 × TX/RX (CR8)	48
QSFP to QSFP	$4 \times TX/RX$ (CR4)	24

Recommended R&S®OSP open switch and control platform for 48, 24 ports


R&S Solution For Compliance and Verification For IEEE802.3 bJ, by, cd, ck, df, dj

- Supported Cables
 - IEEE802.3 symmetrical cables: CR8 (8 lanes), CR4 (4 lanes), and CR1 (1 lane)
- Automation Features
 - R&S VNA and R&S OSP controlled by ZNrun for automated measurements
 - Automated post-processing according to IEEE802.3 metric
- Automated Measurement and Reporting
 - S-parameter measurement: Through, FEXT, and NEXT
 - Post-processing: COM, ERL, and Report generation with overall verdict and detailed results



Patented Time Efficient Calibration Algorithm ex. 64-port Calibration

Rohde & Schwarz

Demo Video

R&S ZNrun and VNA for compliance test

IEEE specification	ZNrun technology- based option	Copper cables	Data rate (per Lane)	Modulation	Symbol rate (per Lane)	VNA BW requirement (PCBs / Cable Assemblies)
802.3bj-2014 802.3by-2016	R&S [®] ZNrun-K410	25GBASE-CR 100GBASE-CR4	25Gbps	NRZ	f _b = 25.785 Gbd	25 GHz
802.3cd-2018	R&S [®] ZNrun-K410	50GBASE-CR1 100GBASE-CR2 200GBASE-CR4	50Gbps	PAM4	f _b = 26.565 Gbd	25 GHz
802.3ck-2022	R&S [®] ZNrun-K411	100GBASE-CR1 200GBASE-CR2 400GBASE-CR4	100Gbps	PAM4	f _b = 53.125 Gbd	50 GHz
802.3df-2023	R&S [®] ZNrun-K411	800GBASE-CR8	100Gbps	PAM4	f _b = 53.125 Gbd	50 GHz
802.3dj draft	R&S [®] ZNrun-K412	200GBASE-CR1 400GBASE-CR2 800GBASE-CR4 1.6TBASE-CR8	200Gbps	PAM4	f _b = 106.25 Gbd	60 GHz

Summary

- Data Center, Service Providers need 800G / 1.6 T b/s Networking for AI
 - Increase IEEE802.3 Ethernet, PCIe cable demands
- R&S Compliance Test Solution
 - IEEE802.3 & PCIe automation compliance test of Cables and Connectors
 - Predefined topology for multi-lane setup
 - Test cases selection
 - Efficient calibration
 - Reduction in testing time
 - Report generation
 - Time domain(TDR) / De-embedding

ROHDE&SCHWARZ

Make ideas real