FUNDAMENTALS OF EMI DEBUGGING & PRE-COMPLIANCE

Elizabeth McKenna – Product Manager, R&S Essentials

ROHDE&SCHWARZ

Make ideas real

WHAT IS EMI?

EMI (electromagnetic interference) is the unintended or undesired radio frequency emissions from a device

COMPLIANCE TESTING

- ► Done either in a certified test lab/house or by manufacturer
 - Follow strict and precise procedures
 - Requires specialized equipment, facilities, and personnel
 - Can be (very) expensive
- ► Failing compliance testing is not uncommon
 - Failure rate is ~70-90%
 - Must reschedule and retest (and pay

PRE-COMPLIANCE TESTING

- Done by device manufacturers, in their labs, before compliance testing
 - Increases chances of passing
- Saves considerable time and money if problems are caught (and corrected) early in the design cycle
- EMI debugging is the process of detecting, analyzing, and correcting unwanted interference

FROM DESIGN TO COMPLIANCE

REQUIREMENTS FOR PRE-COMPLIANCE TESTING

Instruments / Accessories

TEST LOCATION

- Specific test environments are needed for both conducted and radiated compliance testing
- Conducted testing is relatively easy to set up
- Radiated testing generally performed in a shielded chamber or an OATS (open air test site)
 - Radiated **pre**compliance testing usually does not precisely duplicate these environments
- For radiated precompliance, modifications must often be made and/or margins must be added to results
 - For example, if distance between antenna and EUT are shortened, limits will need to be raised

OSCILLOSCOPE DEBUGGING

Oscilloscope

H FIELD PROBES

SPECTROGRAMS

Rohde & Schwarz

- Basic FFT shows power versus frequency
- Spectrogram shows power versus frequency as a function of time
- Color table maps power into colors

less power

more power

FREQUENCY MASK TRIGGER

- Difficult to detect and analyze shortduration (intermittent) events
 - Need to trigger on power exceeding a threshold at given frequencies
- This can be done using a frequency mask trigger
- When the mask is violated, the acquisition stops and captured data can be analyzed in detail

PEAK LIST

- In EMI debug, peak levels are often the most interesting / important
- ▶ Peaks can be found using:
 - Eyeballs
 - Cursors
 - Peak search / list
- Peak list gives the highest amplitude signals (or signals above a given threshold) and their frequencies

524 MHz 349 MHz 291 MHz 255 MHz 178 MHz

many and a second and a second with a second and a second a

SPECTRUM ANALYZER

DETECTORS

- Detectors determine how values measured over an interval are combined into a single value
 - Peak: maximum value
 - Quasi-peak: measures the "annoyance" of a signal
 - Average: average value
- Compliance often uses quasi-peak
 - But precompliance tends to use peak detector
- Peak is much faster than quasi-peak
- Peak levels are always higher than quasi-peak
 - If signals are below limits with peak, they will always be below limit with quasi-peak

SPECTROGRAMS

- ► Power vs. frequency vs. time
 - Signal power (intensity) is mapped to color
- Appears as a "waterfall"
 - Most recent measurements at the top
- Visualize how the levels of signals change over time
- Enables easy identification of:
 - Time-varying behavior (drifting, hopping, etc.)
 - Small signals in the presence of larger signals
- Can be found on both EMI receivers and spec ans
 - Also common on oscilloscopes in FFT mode

FPL1000

EMI RECEIVER

PRESELECTION

- Input signal is not known / controllable
- Out of band signals could overload the mixer
 - Causing compression or distortion and therefore invalid results
- Preselection protects the first mixer
 - Filters the inputs signal to select only the frequencies of interest
 - Automatically configured by receiver
- Many EMI standards require preselection
 - Compliance testing performed using receivers
 - Spectrum analyzer "preselection" is usually simply (YIG) high-pass filtering

TIME DOMAIN SCAN

- ► In a time-domain scan, measurement range is split into large blocks of spectrum
 - Digitized and processed using the FFT
- ► Used in both compliance and precompliance testing

Rohde & Schwarz Understanding EMC Precompliance

EPL1000

SUMMARY

EMI Receivers

- Preselection
- Time domain scan
- Spectrograms
- Limit lines
- Spectrum Sweep
- More specialized
- Same instrument used in compliance testing

Spectrum Analyzers

- No preselection
- No time domain scan
- Spectrograms
- Limit lines
- Spectrum Sweep
- General purpose

Oscilloscopes

- No preselection
- No time domain scan
- Spectrograms
- No (native) limit lines
- Spectrum displayed by FFT
- General purpose
- Wide bandwidth
- Correlation of time and frequency domains
- Ability to measure multiple signals at once

FUNDAMENTALS OF PRE-COMPLIANCE

Rohde & Schwarz Korea

ROHDE&SCHWARZ

Make ideas real

PRE-COMPLIANCE ACCESSORIES

LISN (LINE IMPEDANCE STABILIZATION NETWORK)

- ► Used in **conducted** emissions testing
 - Also known as an "Artificial Mains Network" (AMN) or a "V Network"
- Provides a stable impedance (50 Ω) on the AC mains end of the EUT power cord
- Blocks RF signals on the AC mains from entering the EUT via the EUT power cord
- ► Easy to use:
 - EUT mains cord is plugged into LISN
 - LISN measurement port is connected to measuring instrument (e.g. EMI receiver, spec an, etc.)

CONNECTING A LISN

VARIETIES OF LISNS

- Different standards and different device types may require different types of LISNs
- ► LISNs can differ in terms of :
 - Maximum current rating
 - Frequency range
 - Impedance presented to EUT
 - Number of supported phases
 - Support for DC input power
- LISNs may also have features such as built-in highpass filters, limiters, artificial hand connections, remote control capability, etc.

ADDITIONAL FUNCTIONS OF A LISN

- ► LISNs may also provide additional functions such as:
 - Artificial hand : simulates the capacitive effect of the human body on handheld devices (such as an electric drill)
 - Highpass filter : can be switched into the measurement path to suppress low-frequency signals (e.g. from switched mode power supplies)
 - Transient limiter : protects the measurement instrument from large voltage spikes
 - Remote control : allows remote or automated operation

ANTENNAS

- Radiated compliance requires antennas to measure emitted signals
 - Compliance testing is done in the far field
- Need to cover wide frequency ranges
 - Broadband antennas or combinations of antennas
 - Ex: log periodic, biconical, etc.
- Allow very precise measurements and frequency compensation (antenna factors)
- ► Antenna ↔ EUT distance is often shorter in precompliance
- Antennas not suitable for troubleshooting or debug
 - Too large / bulky (poor spatial resolution)

NEAR FIELD PROBES

- ► Work in the near field (close physical proximity)
- High spatial resolution: can be used to determine the precise source of an emission
 - Often down to a pin or trace on a PCB
- Only relative measurements
 - Good for finding sources, not for verifying limits
- Two different types: H-field and E-field
- Unless you are using a low noise oscilloscope, a preamplifier might be needed

SOFTWARE(ELEKTRA)

- Software is often found in precompliance testing
- Used for scripting or automating tests
 - Can communicates with / control multiple instruments and accessories
- Collects and displays measured data
 - More sophisticated display and customization
 - Compensates for antennas, cables, etc.
 - Often can generate reports, etc.
- Higher speed and better repeatability than manual operation

SOFTWARE(ELEKTRA)

- Intuitive, interactive and automatic EMC measurements
- Covers most common EMC standards with predefined settings/templates
- Efficient result analysis and customized reporting
- Creates test plans with multiple tests for easy management of EUTs

SUMMARY – PRE-COMPLIANCE

- Compliance testing is required for most electrical devices
 - Failure rate in full compliance testing is quite high
 - Redesign and retest require significant time and money
- Precompliance testing helps identify problems early
 - Faster and cheaper to correct issues
 - Increases probability of passing compliance tests
- EMI receivers, spectrum analyzers, and oscilloscopes are the primarily tools used in precompliance testing
 - Receivers / spectrum analyzers for measurements
 - Oscilloscopes for debugging
- Common accessories include LISNs, antennas, near field probes and software

SUMMARY – EMI DEBUGGING

- Undesired radio-frequency emissions can cause electromagnetic interference (EMI)
- ► EMI compliance is tested in the far field
 - Chambers, antennas, spectrum analyzers/ EMI receivers
- EMI debugging is performed in the near field
 - Oscilloscopes and near field probes
- Proper use of the two types of near field probes (E and H) is critical for effective EMI debugging
- ► FFT converts time domain to frequency domain
- Additional FFT-related functions are also helpful when debugging EMI with an oscilloscope

