

FFT BASED MEASUREMENT FOR EMI TESTING

Geunho Kim / System Engineer

ROHDE&SCHWARZ

Make ideas real

INTRODUCTION

6

111

T

EMC Regulations & Certification

Examples for EMC regulation marks:

- Each country or commercial trade region published their own regulations defining the standards that have to apply for goods sold in their market.
- Market surveys ensure manufacturers and importer obey the rules

INTERNATIONAL
INTERNATIONAL

EUROPE
INTERNATIONAL

EUROPE
INTERNATIONAL

INTERNATIONAL

EUROPE

INTERNATIONAL

INTERNATIONAL

EUROPE

INTERNATIONAL

EUROPE

INTERNATIONAL

EUROPE

INTERNATIONAL

EMC (Electro Magnetic Compatibility)?

- ► EMC (Electromagnetic Compatibility)
 - 전자파 환경의 양립성, **적합성** 통칭
 - 전자파를 주는 측과 받는 측의 양쪽에 적용하여 의도된 성능을 확보할 수 있는 능력, 즉 기기나 부품이 전자파를 발생하거나, 외래 전자파의 영향을 받지도 않는 것
- ► EMI (Electromagnetic Interference)
 - 전자파 **장해** 또는 전자파 간섭
 - 기기가 전자파를 외부로 방출하여 복사(Radiation)와 전도(Conduction)의 형태로 다른 기기나 제어 회로에 방해를 주는 것
- EMS (Electromagnetic Susceptibility or Immunity)
 - 전자파 **내성**
 - 각종 전자파 방해로부터 기기나 부품의 성능 저하가 발생되지 않도록 견딜 수 있는 정도

4 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

EMC Standard Overview

EMC Standards

► Different Electronic Equipment require compliance to different Standards

Commercial Equipment:

- I ISM Equipment
- I Consumer Electronics Equipment
- I IT / Household Equipment
- I Lighting Equipment

Applicable Standards:

- I CISPR 11 to 35
- I IEC/EN61000-X-X series
- I Product Specific Standards

ETSI CENELEC

A&D Equipment:

- Aircraft Equipment
- Ship & Submarine Equipment
- Land Based Equipment

Applicable Standards:

- Mil-Std 461
- Mil-Std 464
- RTCA DO 160

Automotive Equipment:

- Control Equipment
- I Infotainment Equipment
- I Communication Equipment

Applicable Standards:

- I CISPR 12, 25
- I ISO11451, ISO11452
- Country specific standards
- I OEM Specific Standards

Circuit

- ► Investigative Test
 - Discovering Internal Interference Sources
 - Ensuring Internal Immunity
 - Implement Circuit Design changes
 - Reinforce shielding of PCB boards, pins, soldering points Investigative Instruments to pinpoint exact source of emissions within a PCB or circuit.

Prototype

- ► Pre-compliance Test
 - Having an idea of the EMC interference.
 - Detecting weak spots in the prototype and eliminating them.
 - Improving chances for getting certification
 - System catered to lower cost (e.g. smaller chamber) and more towards debugging.
 - System designed for fast turnaround time and critical test cases.
 - The test result must correlate with the final ones.

Equipment

- Certification Test
 - Fully compliance testing at an accredited test-lab
 - Competent / Notified bodies may be involved
 - Long process lasting several days
 - Full Certification test.
 - All testing equipment calibrated and compliant to full standard requirements.

R&S EPL1000 Test Receiver

System Level

- Full Platform Testing
 - After all individual equipment has already been certified.
 - Concern is sources of interference external to the platform or unexpected internal interference
 - Larger systems, higher testing levels and larger scale facilities and equipment.

EMI MEASUREMENT

EMI Measurement

14 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

General Test Process

Conducted Emission Test Main Voltage

- ▶ 시험 개념
 - EUT의 전원 케이블을 통하여 전도되는 방해 파를 LISN을 통해서 측정함.
- ▶ 측정 주파수 범위 : (9)150 kHz ~ 30 MHz
- ▶ Standards : CISPR 11, 14-1, 15, 32 등
- ▶ 주요 측정 설비 및 장비 : Shielded room, EMI Test Receiver, LISN

▶ 시험 방법

 EMI Test Receiver로 Pre-scan(측정대상이 되는 전 주파수 대역을 빠른 속도로 측정) 후 Limit Line 대비 6dB Margin 이내의 스펙트럼 성분을 재 scan하여 Test Receiver로 최종 평가 (QP / AV 검파기 이용)

Conducted Emission Test Main Voltage

Power Cable

RF Cable

Conducted Emission Test Main Voltage

► Test Configuration

General Measurement Result

► kl

Influence of RF Emissions

Influence of RF Emissions

21 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

Minimum measurement times

The minimum measurement (dwell) times are given in Table 2. The minimum measurement (dwell) times for scanning receivers and FFT-based measuring instruments in Table 2 and the scan times for spectrum analyzers in Table 1 apply to CW signals. The minimum scan times of Table 1 were derived to perform measurements in the entire CISPR band.

Frequ	uency band	Scan time T _s for peak detection	Scan time T _s for quasi-peak detection	
A	9 to 150 kHz	14.1 s	2820 s = 47 min	
В	0.15 to 30 MHz	2.985 s	5970 s = 99.5 min = 1 h 39 min	
C and D	30 to 1000 MHz	0.97 s	19400 s = 323.3 min = 5 h 23 min	

 Depending on the type of disturbance, the scan time may have to be increased, especially for swept quasi-peak measurements. In extreme cases, the measurement time T_m at a certain frequency may have to be increased to 15 s, if the level of the observed disturbance is not steady.

- ► Minimum Measurement Time for one point
 - Calculation :

Minimum Measurement time

(Maximum Frequency – Minimum Frequency) ÷ Step Size

- CISPR Band B (150k~30MHz) \Rightarrow RBW = 9 kHz, Step Size = 4.5 kHz
 - Quasi Peak 측정을 위한 최소 measurement time = 5970(s)/29.85(MHz) x 4.5(kHz) = 0.9 s
 - Max Peak 측정을 위한 최소 measurement time = 2.985(s)/ 29.85(MHz) x 4.5(kHz) = 0.45 ms

Conducted Noise from Main Lines

Power : 230 V, 50 Hz Switching Interval : 20ms

25 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

Video available on Webinar

26 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

Quasi Peak Response

Video available on Webinar

Quasi Peak Response

28 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

COMPANY RESTRICTED

Stable QP level

Challenge of Testing

- ► Nosie is changing in real time
 - Short operating modes
- ► CISPR 37
 - Measurements in situ and at defined sites
 - Direct QP measurement recommended
 - High variability in ambient noise
 - Reproducability
 - Constant operating mode
- ► EN 50121
 - Railway EMI Test

FFT BASED MEASUREMENT

FFT Based Measurement Time Domain Scan

- Conducted band (150 kHz 30 MHz) fits in one FFT analysis BW
- Perform QP & CISPR Avg in real-time on the conducted band

FFT Based Measurement

FFT Based Measurement

34 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

FFT Based Measurement **Measurement Speed**

Time domain scan with 3 optimization modes

- Automatic

full compliant to CISPR 16-1-1

- Fast

Compliant to CISPR 16-1-1 for pulses with a repetition frequency \geq 10 Hz

– Dynamic

Enhanced dynamic in CISPR band D for applications with requirements beyond CISPR 16-1-1

des			R&S ESW		
		Measurement times	Automatic TDS	Fast TDS	
		150 kHz – 30 MHz 9 kHz, QP + CAV, 1 s	2 s	2 s	
		150 kHz – 30 MHz 9 kHz, Peak, 100 ms	110 ms	110 ms	
	•	30 MHz – 1000 MHz 120 kHz, Peak, 10 ms	380 ms	380 ms	
CISPR 25 Automotive		30 MHz – 1000 MHz 9 kHz, QP + CAV, 1 s	64 s 🍣	% 40 s	
	1	30 MHz – 1000 MHz 120 kHz, QP + CAV, 1 s	50 s	% 40 s	
CISPR 11 crowave oven		1 GHz – 6 GHz 1 MHz, Peak + CAV, 100 ms	216 s 57	% 111 s	
		1 GHz – 18 GHz 1 MHz, Peak, 10 ms	8 s	8 s	
FCC		1 GHz – 26.5 GHz 1 MHz, Peak + AV, 10 ms	13 s	13 s	
MIL		1 GHz – 40 GHz 1 MHz, Peak, 10 ms	21 s	21 s	

Microv

FFT Based Measurement Measurement Speed

Frequency Band	RBW	Detector	Dwell Time	ESR	ESW	Stepped Scan
30 Hz - 1 kHz	10 Hz	Peak	1 s	1.42 s	1.42 s	137 s
1 kHz - 10 kHz	100 Hz 1 kHz 10 kHz 100 kHz			1.06 s	1.06 s	13 s
10 kHz - 150 kHz				1.01 s	1.01 s	7 s
150 kHz - 10 MHz				1.02 s	1.02 s	39 s
10 MHz - 30 MHz			150 ms	0.17 s	0.17 s	79 s
30 MHz - 1 GHz				7.7 s	4.0 s	6 min
1 GHz - 18 GHz	4		15 ms	26.4 s	8.9 s	11 min
18 GHz - 40 GHz	I IVIHZ				14.5 s	14 min
Test Process with FFT based measurement

Test Process with FFT based measurement

Quasipeak detector

CISPR-AV detector

38 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

Measurement with FFT Scan

Video available on Webinar

Measurement with FFT Scan Continuous Scan

Video available on Webinar

Test Setup for EMI-Debugging in a car

- CISPR 25 protection of on-board receivers
- Impedance converter EZ12
- Measure what the car's antennas are picking up
- Real-time can look at whole frequency bands

AM Band, Engine Start and Stop

Video available on Webinar

Power Windows

Video available on Webinar

REAL-TIME SPECTRUM

Detect complex signals at first

Persistence mode

 Shows probability of amplitude appearence with colors. Signals with different behavior in time become visible even if hidden behind broadband interferers

Spectrum mode

 Displays behavior of traces in time for easy identification of drifting or pulsed signals

Benefit of FFT Based Measurement

- ▶ 기존 측정 방식 보다 빠른 측정 시간과 정확도를 가짐.
- ▶ EMI 시험 인증으로 사용 가능.
- ▶ 전 주파수에 대해 직접적인 Quasi Peak 결과 측정 가능
 Quasi Peak Detector의 실시간 변화 확인
- ▶ 짧은 시간안에 변하는 노이즈를 정확하게 검출 가능
 운행 중인 기차 측정
 가속 또는 감속 중인 차량 측정
- ▶ Real Time Spectrum 기능을 이용해 높은 노이즈에 숨어 있는 노이즈 측정 가능

45 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

RECEIVER FOR FFT MEASUREMENT

What makes an EMI receiver Compliant?

Conformity with CISPR 16-1-1

(commercial products)

This includes

- Specific VSWR
- Specific Selectivity (RBW filters)
- Specific detectors ("CISPR detectors") with
 - Minimal sine wave accuracy
 - Defined response to pulses
- Further requirements for product testing
- Preamplifier (sensitivity)
- Preselection

What are "pre-compliance measurements"?

- ► The EMI measurement standards define
 - T&M Equipment characteristics,
 - Set-up, procedure and operation of the EUT
 - Limits
- If a measurement is not compliant in one or more of these points it can be referred to as "pre-compliant".
- Pre-compliant measurements should be done as close as possible to the related standards (reasonable effort)
- ► They typically give a pass / fails result (quantitative measurement)
- \rightarrow There are no binding standards for pre-compliant measurements!

R&S Receivers

FSWT

Top notch test receiver with outstanding performance by narrow preselection for wideband TEMPEST measurements

ESW

High-end compliant EMI receiver with maximum measurement speed, superior HF performance and multifunctional applications up to 44 GHz

0 . 0

10 10

Co

....

60

ESRP

Precompliance measurements – fast and straightforward with preselection for excellent performance up to 7 GHz

ESR

00000

....

Compliance receiver for lab and mobile testing with high speed and best insight using real-time spectrum analysis up to 26.5 GHz

EPL1000 Compliance receiver for conducted and magnetic field testing up to 30 MHz

Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

FFT Based Measurement R&S Receiver for Compliance Testing

2012 ESR

30 MHz FFT-Bandwidth

2016 ESW

60 MHz FFT-Bandwidth

8 MHz FFT-Bandwidth

EPL1000 OVERVIEW

- ► CISPR 16-1-1 compliant
- 5kHz 30MHz, targeting conducted EMI measurement applications
- Includes
 - Preselection
 - Time domain scan
 - Input protection
 - Spectrum analysis
- Several option like
 - Internal tracking generator
 - Battery operation
 - DC input

Speed. Flexibility. Compliance.

Discontinuous Disturbance – Clicks

- Mandatory for most devices of CISPR 14-1 - "Requirements for household appliances, electric tools and similar apparatus"
- Typically tested are ovens, irons, rice cookers, refrigerators, air conditioners and washing machines
- The measurement takes as long as one operating cycle of the EUT but at least 2 hours or until 40 clicks are reached
- 4 frequencies of CISPR band B need to be measured continuously using peak and quasi-peak detector
- Higher limits are used in case the emissions are not too long (< 200 ms) and occur not too often (< 25% of clicks above limit for continuous disturbance)

Measurement C	onfig				_		×
Test Duration	General	Channel	Analysis	LISN			
	Channe	el 1	Channel 2	Cha	annel 3	Channel 4	
Frequency	150 kH	z	500 kHz	0 kHz 1.4 MHz		30 MHz	
Select Limit Line	2	EN	N 55011 VOLT	AGE MA	INS QP CLASS	В	
Limit of continuo disturbance	^{us} 66.0 dE	β μV	56.0 dBµV	56.	0 dBμV	60.0 dBµ\	1
Transducer				ENV216			
Channel Correction	10.0 dE	3	10.0 dB	10.	0 dB	10.0 dB	
Margin Peak Detector	0.0 dB	5	0.0 dB	0.	0 dB	0.0 dB	

EPL1-K59 Click Rate Analyzer

- Compliant with CISPR 14-1 editions 6 and 7
- Simultaneous and gapless measurement of all four frequencies defined by CISPR 14-1
- Optional frequency setting in line with DENAN law (Japan)
- Analyze 4 hours of measurement values within a few seconds

Eliminate all interference in your testing With the R&S®ESW EMI test receiver – 1 GHz wideband extension

ESW-B1000 970MHz FFT Bandwidth Key features of New ESW Wideband option

970 MHz FFT bandwidth

120 kHz RBW
30 MHz – 1 GHz (CISPR Band C&D)

Real-time

Gapless measurements in receiver spectrogram

Quasi-peak

Simultaneous measurement of CISPR detectors at full bandwidth

Pulse resolution 5 Hz - Fully compliant in CISPR Band D (300 MHz - 1 GHz)

55 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

FFT Based Measurement R&S EMI Test Receiver Preselector

CISPR	ESR		ESW			
	Filter band	Filter type	Filter band	Filter type		
Band A	< 150 kHz	Fixed LP	1 Hz – 150 kHz	Fixed LP		
Pond P	150 kHz - 30 MHz	Fixed BP	150 kHz – 30 MHz	Fixed BP		
Danu D			2 MHz – 30 MHz	Fixed BP		
			8 MHz – 30 MHz	Fixed BP		
	30 - 80 MHz	Fixed BP	30 – 125 MHz	Fixed BP		
	80 - 130 MHz	Fixed BP	125 – 205 MHz	Fixed BP		
Band C	130 - 180 MHz	Fixed BP	205 – 285 MHz	Fixed BP		
	180 - 230 MHz	Fixed BP	285 – 365 MHz	Fixed BP		
	230 - 300 MHz	Fixed BP				
	300 - 425 MHz	Fixed BP	285 – 365 MHz	Fixed BP		
	425 - 570 MHz	Fixed BP	365 – 445 MHz	Fixed BP		
	570 - 715 MHz	Fixed BP	445 – 525 MHz	Fixed BP		
	715 - 860 MHz	Fixed BP	525 – 605 MHz	Fixed BP		
Band D	860 - 1005 MHz	Fixed BP	605 – 685 MHz	Fixed BP		
			685 – 765 MHz	Fixed BP		
			765 – 845 MHz	Fixed BP		
			845 – 925 MHz	Fixed BP		
			925 – 1001 MHz	Fixed BP		
	1005 - 1750 MHz	Fixed HP	1001 – 1795 MHz	Fixed BP		
	1750 - 2850 MHz	Fixed HP	1795 – 2895 MHz	Fixed BP		
Rond E	2850 - 4850 MHz	Fixed HP	2895 – 4895 MHz	Fixed BP		
Danu E	4850 - 7000 MHz	Fixed HP	4895 – 6800 MHz	Fixed HP		
	7 – 26.5 GHz	YIG BP	6.8 – 8 GHz	Fixed HP		
			8 – 44 GHz	YIG BP		

56 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

ESW-B1000 970MHz FFT Bandwidth Concept of New ESW Wideband Option

Parallel signal paths cover CISPR bands C and D

All eight paths have their own preselection and preamplifier to achieve maximum dynamic range

Parallel A/D converters

Split signal path increases dynamic range for pulses

Massive computing power to calculate the spectrum in **real-time**

ESW-B1000 970MHz FFT Bandwidth Parallel measured FFT-Segments

ESW-B1000 970MHz FFT Bandwidth Testing Times

Frequency range	Resolution bandwidth	Measurement time	Detector(s)	Automatic TDS (base unit)	Automatic TDS (with R&S®ESW-B1000 or R&S®ESW-B1000R option)	Speed TDS (with R&S®ESW-B R&S®ESW-B1000F	1000 or coption)
30 MHz to 1 GHz	120 kHz	10 ms	Peak	380 ms	18	3 ms	
30 MHz to 1 GHz	120 kHz	1 s	QP and CAV	50 s	18.5 s	1.8 s	
30 MHz to 1 GHz	9 kHz	1 s	QP and CAV	64 s	22	2.5 s	Single
1 GHz to 6 GHz	1 MHz	1 s	Peak and CAV	293 s	2	6 s	970 MHz segment
30 MHz to 1 GHz	100 kHz	150 ms	Peak	4.1 s	15	5 ms	
1 GHz to 18 GHz	1 MHz	15 ms	Peak	13.1 s	1	1 s	
18 GHz to 40 GHz	1 MHz	15 ms	Peak		18 s		

59 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

ESW-B1000 970MHz FFT Bandwidth Testing Times

Video available on Webinar

ESW-B1000 970MHz FFT Bandwidth Testing Times

Video available on Webinar

Examples: Sparkling water tap compressor

Short wideband pulse (switching process every 10 to 15 s)

Examples: Sparkling water tap compressor

Video available on Webinar

Examples: Microwave oven

- Realtime bandwidth of 450 MHz above 1 GHz
- Oven turned off
- ISM spectrum at 2.4 GHz (Wifi, Bluetooth)

Examples: Microwave oven

 Realtime bandwidth of 450 MHz above 1 GHz

Oven turned on

 Out of band interference

65 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

And what about "Debugging" and "diagnostics"?

Debugging / diagnostics is done to

- Iocate the sources /
- identify the characteristics of emissions of devices or Components.

Typically the measurements are qualitative

Oscilloscopes for EMI measurements

- Oscilloscopes are not suitable for compliant EMI measurements
- They can be very helpful to locate and analyze sources of EMI
- Strong feature is the combined signal analysis in time and frequency domain
- → Quick correlation analysis between spectral emission and time-domain signal parameters
- → Intermittent signals can easily be captured and analyzed in the frequency domain by using a time-domain trigger

Oscilloscopes for EMI measurements

Video available on Webinar

R&S®Fxx-K54 EMI Measurement application

- Detectors required by CISPR standard
 - Quasi-Peak, CISPR-Average and RMS-Average (CISPR-RMS)
- Resolution Bandwidths for CISPR- and MIL-Standard
- 200.001 sweep points (configurable)
- Preconfigured Limit Lines and transducer tables
- ► Logarithmic frequency-axis
- Marker functions with EMI-Detectors
- Peak search according to limit
- Marker AM/ FM demodulation
- Remote control for R&S LISNs

K54 on FPL1000

General functions

Туре	R&S®FSW	R&S® FSV(A)3000	R&S®FPL1000	R&S®FSVR	R&S®FSV(A)
Lowest frequency	2 Hz	FSVA3000: 2 Hz FSV3000: 10 Hz	5 kHz	10 Hz	10 Hz
Highest frequency (according to model)	8, 13.6, 26.5, 43.5, 50, 67, 85 GHz	4, 7.5, 13.6, 30, 44 GHz	3, 7.5, 14, 26.5 GHz	7, 13.6, 30, 40 GHz	4, 7, 13.6, 30, 40 GHz
Real-time spectrum	Up to 800 MHz	-	-	Up to 40 MHz	-
Spectrogram	+	+	+	+	+
Tracking generator	Ext. gen. cont.	Ext. gen. cont.	+	-	+
DC operation	-	-	+	-	+
Battery operation	-	-	+	-	+

R&S FSV(A): - Phased out Dec. 2020 - Key code options available until Dec. 2025

K54 related functions

Туре	R&S®FSW	R&S® FSV(A)3000	R&S®FPL1000	R&S®FSVR	R&S®FSV(A)
EMI option	FSW-K54	R&S®FSV3-K54	R&S®FPL1-K54	R&S®FSV-K54	R&S®FSV-K54
CISPR calibration option	FSW-K54CAL	R&S®FSV3-K54C	-	-	R&S®FSV- K54CAL
Report function	+	+	+	-	-
CISPR detectors for frequency sweep	+	Planned beginning of 2022	Released with FW 1.80	+	+
Support by R&S®ELEKTRA	+	+	+	-	R&S®FSV only
Support by R&S®EMC32	+	-	-	+	+
					R&S FSV(A): - Phased out D - Key code opti available until [

71 Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

INSTRUMENTS WITH R&S®FXX-K43 RECEIVER MODE

- ► R&S®FPC Spectrum Analyzer
 - Frequency range 5 kHz 3 GHz
 - Tracking generator
 - ELEKTRA support
- ► R&S®FPH Handheld Spectrum Analyzer
 - Frequency range 5 kHz 31 GHz
 - ELEKTRA support
- ► R&S®FSH Handheld Spectrum Analyzer
 - Frequency range 9 kHz 20 GHz
 - Tracking generator

K43 option adds 6 dB bandwidths & Detectors (CISPR 16-1-1)
Comparison R&S®FXX-K54 - R&S®FXX-K43

	K54	K43
Supported devices	R&S®FPL1000 R&S®FSV(A)3000 R&S®FSVR R&S®FSW	R&S®FPC R&S®FSH R&S®FPH
6 dB RBW (CISPR)	Х	Х
CISPR detectors	Х	only quasi-peak
6 dB RBW (MIL-STD-461)	Х	-
Log scale	Х	Х
Fixed frequency, channel scan and frequency scan	-	Х
Limit line library	Х	-
Transducer factor library	Х	-
Measurement points	up to 200.001 (user selectable)	R&S®FSH: 631 R&S®FPH: 10.000 R&S®FPC: 20.000
LISN control	R&S®ENV216 / 432 / 4200	R&S®HM6050 with R&S®FPC (PC required)
Measurement automation	Х	-
Report generation	X (not R&S®FSVR)	-
Use with R&S®ELEKTRA	X (not R&S®FSVR)	X (not R&S®FSH)

K54: EMI Measurement applicationK43: Receiver mode (and channel scan measurement application)

R&S®ELEKTRA can add the following features not part of K43 but of K54 (relevant for R&S®FPC and R&S®FPH):

- Limit line library
- Transducer factor library
- LISN control
- Measurement automation
- Report generation

Rohde & Schwarz 2024-01-30 FFT Based Measurement for EMI Testing

COMPANY RESTRICTED

ROHDE&SCHWARZ

Make ideas real

COMPANY RESTRICTED