OPEN RAN – NETWORK PERFORMANCE IN THE LAB AND IN THE FIELD

Reiner Stuhlfauth Technology Manager Wireless reiner.stuhlfauth@rohde-schwarz.com

ROHDE&SCHWARZ

Make ideas real

Arnd Sibila Technology Marketing Manager MNT arnd.sibila@rohde-schwarz.com

AGENDA

RAN disaggregation aspects

- O-RAN fronthaul conformance testing
- E2E testing of Open RAN based networks and how to compare network performance
- Network synchronization aspects and verification over the air
- Conclusions

OPEN RAN – MOTIVATION: PLATFORM EVOLUTION From a single purpose device to a general purpose hardware

Rohde & Schwarz

OPEN RAN: HIGH LEVEL ARCHITECTURE

Open RAN is a cooperation between radio technologies, transport network,

cloud data storage, network management and RIC control, time synchronization and security

OPEN RAN TERMINOLOGY (SOURCE ERICSSON)

Open RAN

Industry term for open radio access network architecture.

This includes RAN with open interoperable interfaces, RAN virtualization, Big Data and AI-enabled RAN.

O-RAN

Refers to <u>the O-RAN Alliance</u>, creates standards covering three different areas: RAN disaggregation, RAN automation and RAN virtualization. **The O-RAN specifications complement the 3GPP specifications** by defining interface profiles, additional new open interfaces and new nodes.

OpenRAN

Refers to initiatives driven by TIP's OpenRAN Project Group.

vRAN

('v' stands for virtual) denotes the development of 5G RAN as it becomes software-defined and programmable. Operators deploying Open RAN can choose between 3GPP-based vRAN or O-RAN architectures.

Cloud RAN

Is a virtualized RAN that is designed to be <u>cloud native</u>, built on a future-proof architecture and incorporating key elements such as microservices, <u>CI/CD</u> (continuous integration and deployment) and containerization.

MEC

Mobile Edge Computing, MEC, or Multi-Access Edge Computing, can provide execution resources (compute and storage) for applications with networking closer to the end users

O-RAN ALLIANCE: Reshaping the industry to boost innovations and openness

Leading global mobile operators drive the **O-RAN** initiative in order to:

- Avoid vendor lock-in •
- Reduce cost ٠
- Boost innovation •
- Enable new 5G • business models

Open RAN Alliance mission is to re-shape the RAN industry towards more intelligent, open, virtualized and fully interoperable mobile networks.

Virtualized network elements

White-box hardware

O-RAN COMMUNITY EVOLUTION

Fast increasing O-RAN community, including 30 leading MNOs and > 290 contributing members from the industry ecosystem 3.5 years after foundation.

https://www.thefastmode.com/technology-solutions/16523-o-ran-alliance-tip-team-up-to-develop-interoperable-open-ran-solution

OPEN RAN – THE HOLISTIC PICTURE

Making the RAN flexible, smart and agile.

=>There is more than one interface

=> There is a dependency between interfaces and network functions

3GPP FUNCTIONAL SPLIT

TR 38.801 describes several proposals of functional split between CU and DU

Real-time and latency requirements + higher data rates

Least demanding transport network data rates + relaxed timing

O-RAN INITIATIVE HLS AND LLS COMBINATION

Double split option to bridge between centralization, data rate requirements and multi-radio coordination

- © RU complexity low + disaggregation, open but standardized interfaces => multi-vendors
- ☺ Requires additional standardization as complement to 3GPP + interoperability

RAN DISAGGREGATION – VARIOUS SPLIT OPTIONS

BÈ

REAL WORLD: VARIOUS CU, DU AND RU COMBINATIONS

AGENDA

- RAN disaggregation aspects
- O-RAN fronthaul conformance testing
- E2E testing of Open RAN based networks and how to compare network performance
- Network synchronization aspects and verification over the air
- Conclusions

O-RAN CERTIFICATION AND BADGING CONCEPT

governing body

Rohde & Schwarz Open RAN – network per

PROFIT FROM R&S COMPETENCE FOR O-RAN TESTING

Open RAN - network performance in the lab and in the field

Rohde & Schwarz

O-RAN E2E testing verifies KPIs of system or O-RAN subsystem

TEST AND VALIDATE YOUR O-RU

Integrated test set-up compliant to 3GPP & O-RAN Fronthaul Conformance Specifications

O-RAN FRONTHAUL CONFORMANCE TESTING OVERVIEW

RS .

O-RAN FRONTHAUL INTERFACE – TRANSPORT PROTOCOLS

AGENDA

- RAN disaggregation aspects
- O-RAN fronthaul conformance testing
- E2E testing of Open RAN based networks and how to compare network performance
- Network synchronization aspects and verification over the air
- Conclusions

OPEN RAN IN-FIELD TESTING STRATEGY

- Open RAN E2E system testing for Engineering and Optimization
 - Engineering in pre-commercial phase (before roll-out)
 - Lab testing and Field trials
 - Site Testing and Performance Tuning after deployment
 - **Optimization and troubleshooting** in operational networks
- QoS/QoE testing
 - Established quality baseline verification applies to Open RAN
 - E2E Quality Benchmarking
 - Compare different vendors and RAN architectures
 - E2E Quality Monitoring
 - 24/7 surveillance of the capacity, stability and integrity

O-RAN CHALLENGES AND IMPACT ON TESTING

Q14: For Open RAN multi-vendor deployments, what do you see as <u>the</u> <u>biggest challenge</u>?

Interoperability of different elements	42%
Achieving similar performance to single- vendor networks	20%
Implementing virtualized/cloud RAN	14%
Achieving substantial cost savings	15%
Harder to outsource network maintenance and testing so need to do more in-house	9%

 Fair evaluation of network performance in field (End-2-End) from end-user perspective
 Benchmarking the network quality of Open RAN <u>vs. single vendor networks</u>

Mobile Network Testing helps to overcome the Network Performance challenge

PROFIT FROM R&S COMPETENCE FOR O-RAN TESTING

EVALUATE OPEN RAN NETWORK PERFORMANCE

EVALUATE OPEN RAN NETWORK PERFORMANCE

Rohde & Schwarz

ETSI METHODOLOGY USED ON GLOBAL SCALE

"TR 103 559 describes its scoring method with full transparency for the benefit of implementers, network providers and regulatory authorities, and has been applied on a global scale". (Source: Enjoy! THE ETSI MAG, July 2021)

Network Performance Score (NPS)

- Technology-agnostic and transparent
- Makes different networks/countries/regions and different RAN architectures comparable

Makes different networks/countries/regions and different RAN architectures comparable

Rohde & Schwarz

COMPARING NETWORK PERFORMANCE OF OPEN RAN WITH SINGLE VENDOR REGIONS

Fair comparison of perceived quality end-to-end (end user perspective)

AGENDA

- RAN disaggregation aspects
- O-RAN fronthaul conformance testing
- E2E testing of Open RAN based networks and how to compare network performance
- Network synchronization aspects and verification over the air
- Conclusions

NETWORK SYNCHRONIZATION: O-RAN cell synchronization measured over-the-air

NETWORK SYNCHRONIZATION: Measurement results (failure case)

G NR	Scanner TopN	View:1 R&S 5G NR	Scanner (TSME)[1]						- 🗆 ×
Top N	l: xx@637632						Auto Width	Hide Details	Hide Chart
.ist									
1 #	PCI	SSB Idx	SS-RSRP	₩ S	S-SINR	NR-ARFCN	SS-Ref	ToA(PPS)	
1	373	0	-75,61	2	2.58	637632	3564.48	3.07324139	
2	372	0	-101.25	-	25.65	637632	3564.48	3.07328682	
3	716	0	-105.05		29.46	637632	3564.48	3.07339537	
4	85	0	-111.29	87	4.41	637632	3564.48	0.07598861	
5	603	0	-113.76		7.67	637632	3564.48	0.07827527	
8	96	0	-120.36	02	13.59	637632	3564.48	0.07834053	
10	629	0	-120.41	82	14.85	637632	3564.48	0.08629245	
7	692	0	-120.80	82	15.27	637632	3564.48	0.08328950	
6	29	0	-121.03	1	15.93	637632	3564.48	0.07921318	
11	652	0	-122,48	19	16.80	637632	3564.48	0.08449997	
9	304	0	-125.21	52	19.91	637632	3564.48	0.07559080	
12	325	0	-126.23	25	21.02	637632	3564.48	0.07707206	
13	574	0	-130.54		25.21	637632	3564.48	0.07509223	

ToA = the difference of SSB reception to PPS (GPS)

3.073 ms – 0.076 ms = 3 ms time difference! Completely out of sync!

Typically, asynchronous cells have a difference of a few 100's µs

NETWORK SYNCHRONIZATION: Measurement results (successful)

OMES (R	eplay ONLY)								Difference between SSR
View	Hardware	Technologies I	Replay Tools Window	r Help					Dillerence between 33D
2 P)	44	6 🗠 🔝 🖬	; 🛃 ☷ 🕨 🔳						and SSR 1 is 200 us
5G NR S	canner TopN \	View:1 R&S 5G NF	R Scanner (TSME)[1]				-	□ ×	and $330 + 15 \approx 200 \mu s$
Top N:	<auto>@633</auto>	984				Auto Width	de Details Hide	Chart	
List									
1 #	PCI	SSB Idx	SS-RSRP	SS-SINR	NR-ARFCN	SS-Ref	ToA(PPS)	-	
2	94	0	-108.40	-0.95	633984	3509.76	0.07673132		ר
1	73	0	-109.90	-3.48	633984	3509.76	0.07468142		
6	429	0	-116.34	-11.13	633984	3509.76	0.07755952		
16	403	0	-122.98	-18.05	633984	3509.76	0.08401424		- Difference is < 9 us
15	372	0	-124.59	-19.64	633984	3509.76	0.08148061		
13	356	0	-125.10	-20.14	633984	3509.76	0.08099457		
14	209		-126.16	-21.25	633984	3509.76	0.07641720		
3	372	1	-113.52	-2.65	633984	3509.76	0.29555349	201	1
8	429	1	-116.48	-6.70	633984	3509.76	0.29134429		
10	94	1	-116.79	-7.07	633984	3509.76	0.29077441		
9	73	1	-122.38	-13.27	633984	3509.76	0.28874580		Difference is < 9 us
18	403	1	-123.88	-14.80	633984	3509.76	0.29809783		
19	207	1	-129.96	-21.01	633984	3509.76	0.28878754		
29	209	1	-130.13	-21.11	633984	3509.76	0.28957665		

ToA measurements are done as drive tests (large area in short time) \rightarrow target: detect outliers!

• Open RAN synchronization measurements suitable in field as quick feasibility check

Rohde & Schwarz

OPEN RAN TEST SOLUTIONS OF R&S MOBILE NETWORK TESTING

Engineering

- Function
 - Network Access
 - Mobility
 - Scheduling
- Performance
 - Throughput DL / UL
 - Latency
 - Interactivity

- Performance
- Throughput DL / UL
- Latency
- Interactivity

QoS / QoE

- Data services
 - Data transfer
- Web content
- Voice
 - VoLTE / EPS Fallback
 - VoNR
- Video Streaming
- Video Call

OPEN RAN TEST SOLUTIONS OF R&S MOBILE NETWORK TESTING

Network

Monitoring

Conclusions

O-RAN Alliance specifications complement 3GPP baseline

Multiple RAN disaggregation options allow for multiple implementations from multiple players \rightarrow Additional interoperability / conformance / time synchronization / security requirements

In-field evaluation and comparison of Open RAN network performance using the wellestablished ETSI TR method are essential for the success of O-RAN architecture

Network Synchronization needs to be verified – asynchronous cells are a potential and probable source of interference in Open RAN networks

Rohde & Schwarz is your test solutions supplier for 3GPP and O-RAN conformance and network performance in the lab and in the field

www.rohde-schwarz.com/wireless/O-RAN

OPEN RAN – NETWORK PERFORMANCE IN THE LAB AND IN THE FIELD

Thank you for listening.

www.rohde-schwarz.com/wireless/O-RAN

ROHDE&SCHWARZ

Make ideas real

