Mobile Test Summit Korea 2024

6G RESEARCH AREAS FROM T&M PERSPECTIVE

Yongsub Byun (Rohde & Schwarz Korea) Seunggeun Yoo (Rohde & Schwarz Korea)

ROHDE&SCHWARZ

Make ideas real

MOBILE TEST SUMMIT KOREA 2024

► 6G Research Areas from T&M Perspective

RESEARCH AREAS FROM A T&M PERSPECTIVE

THz communication. and "FR3"

Artificial Intelligence and Machine Learning

Reconfigurable Intelligent Surfaces

Photonics, Visible **Light Communication**

The Metaverse and eXtended Reality (XR)

Multiple access, new waveforms. channel coding

Extreme-massive MIMO

New network topologies, distributed computing

Full-duplex communication

Security & Trustworthiness

A high-level overview of all these research areas is provided in one of our #THINKSIX videos

RESEARCH AREAS FROM A T&M PERSPECTIVE

THz communication, and "FR3"

Artificial Intelligence and Machine Learning

Reconfigurable Intelligent Surfaces

Photonics, Visible Light Communication

The Metaverse and eXtended Reality (XR)

Multiple access, new waveforms, channel coding

Extreme-massive MIMO

New network topologies, distributed computing

Full-duplex communication

Security & Trustworthiness

A high-level overview of all these research areas is provided in one of our #THINKSIX videos

Reconfigurable Intelligent Surfaces

Mobile Test Summit Korea 2024

RECONFIGURABLE INTELLIGENT SURFACE

DEFINITION OF RIS

► RIS (reconfigurable intelligent surface) is a new type of network node leveraging smart radio surfaces, whose response can be adapted to the status of the propagation environment through control signalling

Source: ETSI ISG RIS GR001

USE CASES

- Coverage enhancement
- Spectral efficiency improvement
- Beam management
- Secure communication
- Localization accuracy
- Sensing capabilities
- **Energy efficiency**

THE KEY TO RIS

► The key to RIS involves metamaterials that allow manipulation of their inherent electro-magnetic reflection and refraction characteristics

OVERVIEW OF RIS TYPES

FUNDAMENTAL TEST SETUP

Source: ETSI ISG RIS GR002

6G-LICRIS

► Liquid crystal reconfigurable intelligent surfaces for 6G mobile networks

Objective

Enhance coverage and capacity of future 6G networks while minimizing power consumption with Reconfigurable Intelligent Surfaces (RIS)

Contributions

- Use cases and requirements
- Technology, concept and RIS development
- ► Simulation models and measurement methods
- Radio environment and channel modeling
- Network integration
- Demonstration

CONTENTS

Webinar: RIS – shaping the radio channel for best connectivity

This webinar explains the technology behind RIS, discusses possible use cases and applications and examines what this means for testing.

→ Register to watch

Video: 6G Reconfigurable Intelligent Surfaces (RIS)

This video introduces the topic and the test requirements of reconfigurable Intelligent Surfaces (RIS).

→ Watch Video

Whitepaper: Reconfigurable intelligent surfaces (RIS)

Read this white paper now for an in-depth information on the principles of metamaterials, different RIS types and T&M requirements.

→ Download now

Extreme-massive MIMO

Mobile Test Summit Korea 2024

EXTREME-MASSIVE MIMO

6G EXTREME MASSIVE MIMO

5G massive MIMO

- Frequency
 - 3.4 ~ 3.7GHz in Korea
 - 100MHz BW
- ► TRx
 - 32
 - 64
- ▶ Antenna Elements
 - **192**
 - 384

6G extreme massive MIMO

- Frequency
 - Upper-mid Band / 7 ~ 24GHz
 - > 400MHz
- ► TRx
 - 256
- ▶ Antenna Elements
 - **> 1000**

CHALLENGES IN ANTENNA TEST MULTI-PORT NETWORK ANALYZER

► Frequency Range : up to 24GHz

► Number of Ports : up to 256 ports

5G massive MIMO

6G Extreme massive MIMO

26.5GHz / 256TRx

WIRED NETWORK 6G FRONTHAUL OPTICAL LINK

- > x 10 Data Rate with 6G Extreme massive MIMO
- ► Ultra-high Speed/Capacity Optical Component for 6G fronthaul
 - Up to 110GHz VNA with Photodiode
 - DUT : E/O and O/E Converter

Photonics, Visible Light Communication

Mobile Test Summit Korea 2024

PHOTONICS, VISIBLE LIGHT COMMUNICATION

THE ROLE OF PHOTONICS IN 6G

THz and VLC (6G-ADLANTIK)

- Generation of THz radiation by optical mixing on a photodiode
- VLC (visible light communication) also known as LiFi: modulation of commercial LEDs, cost-efficient with easy integration into existing infrastructure mainly for line-of-sight indoor applications
- optical generation of microwave oscillators with ultra-low phase noise

All-Photonic networks (APN)

- Innovative Optical and Wireless Networks Global Forum (IOWN GF)
- end-to-end optical path between points in the networks with minimal photo-electric conversion to realize large-capacity, low-latency, and low-energy consumption infrastructure

Quantum communication and quantum networks

- trustworthiness for ultra-secure and reliable communication
- inherently secure way of quantum key distribution (QKD) by exchange of entangled photons

6G-ADLANTIK

▶ Photonic THz generation and analysis for 6G communication and T&M

Objective

Ultra-stable tunable THz system for 6G wireless communication and test & measurement based on photonics

Scope of work

- ► Use cases and requirements definition
- ► Photonic generation of tunable THz signals, modulation and demodulation for 6G wireless communication
- ► Test and measurement for component characterization with coherently received THz signals
- ► THz waveguide architecture simulation and design
- ▶ Ultra-low phase noise photonic reference oscillator
- ► Proof-of-concept demonstrator

DOWN-CONVERSION: OPTOELECTRONIC THZ GENERATION

Photomixer: unittraveling carrier photodiode (UTC-PD)

THZ WAVES FOR COMMUNICATIONS IEMN AND R&S PRESS RELEASE

➤ 300GHz bi-directional link over 650m

Courtesy of: Prof. G. Ducournau, IEMN, CNRS-Université de Lille PhLAM, CPER Photonics, Hauts de France Region, FRANCE

https://www.rohde-schwarz.com/about/news-press/all-news/rohde-schwarz-andiemn-collaborate-on-6g-thz-by-bringing-together-electronic-and-photonictechnologies-press-release-detailpage 229356-1369600.html

PHASE NOISE MEASUREMENT USING CROSS-CORRELATION

Instrument

CROSS CORRELATION METHOD UP TO 500GHZ

PHASE NOISE ANALYZER WITH FREQUENCY CONVERTERS

THz communication, and "FR3"

Mobile Test Summit Korea 2024

THZ COMMUNICATION AND "FR3"

TOWARD 6G NEW SPECTRUM FR3

* 한국전자파학회논문지 (The Journal of Korean Institute of Electromagnetic Engineering and Science) (jkiees.org)

ITU 2023 / FCC / WRC-23 Study items: 14.8 to 15.35 GHz, 1
 2.2 to 13.25 GHz, 7.125-8.4 GHz

IMT-2030, 6G 후보 주파수 대역 : 네이버 블로그 (naver.com) 차세대 이동통신 6G로 가는 길 - Part .. : 네이버블로그 (naver.com)

- Candidate BW: Max. 400MHz(expectation)
- Candidate Signal: OTFS*(Orthogonal Time Frequency Space)
- MWC2024 demo:
 - ADI reference transceiver board
 - 550 MHz BW, 60 kHz SCS, -42dB EVM (w/o I/Q NC)
 - <-45dB EVM w/ I/Q NC applied

TOWARD 6G NEW SPECTRUM – CHANNEL MEAS.

TOWARD 6G NEW SPECTRUM – CHANNEL MEAS. FR3

TOWARD 6G CHANNEL MEASUREMENTS FR3 (13-15 GHZ) WITH DOA

FR3 14 GHz center frequency, 2 GHz BW (Tx at elevator)

Power delay profile CIR 14 GHz (LOS and multipath)

TOWARD 6G CHANNEL MEASUREMENTS FR3 (13-15 GHZ) WITH DOA

FR3 14 GHz center frequency, 2 GHz BW (Tx at elevator)

Power delay profile CIR 14 GHz at various distances

TOWARD 6G CHANNEL MEASUREMENTS FR3 (13-15 GHZ) WITH DOA

TOWARD 6G NEW SPECTRUM – CHANNEL MEAS. D-BAND

Integrated sensing & communication

Mobile Test Summit Korea 2024

INTEGRATED SENSING AND COMMUNICATION (ISAC)

TOWARD 6G ISAC(INTEGRATED SENSING AND COMMUNICATION) 24- 44G

- 1. KOMSENS-6G
- 2. Rohde & Schwarz IASC Solution
- 3. MWC 2024 ISAC

TOWARD 6G ISAC(INTEGRATED SENSING AND COMMUNICATION) 24- 44G

TOWARD 6G ISAC(INTEGRATED SENSING AND COMMUNICATION) ALL-FREQ

AREG800A new features

- Customized Frontend 지원, up to **5GHz BW(0.7to 5.7GHz)**
- AREG8-K528(5GHz BW), AREG8-K553(Frontend Control)

m	Channel 1									
Radar Power		Object	State	Range (m)	Attenuation (dB)	Doppler Speed (km/h)				
SCPI		1	On	30.00	0.00	112.000				

ISAC Demonstration

- DUT: Tx VSG, Rx- VSA
- Waveform: NR + FMCW
- AREG: Target Simulator

TOWARD 6G ISAC(INTEGRATED SENSING AND COMMUNICATION) ALL-FREQ

Crosscorrelation to derive velocity

Frame Results Averaged	Mean	Limit	Мах	Min					
EVM PDSCH QPSK (%)		18.50							
EVM PDSCH 16QAM (%)		13.50							
EVM PDSCH 64QAM (%)	2.31	9.00	2.31	2.31					
EVM PDSCH 256QAM (%)		4.50							
EVM PDSCH 1024QAM (%)		3.80							
Results for Selection BWP/SS All, Subframe All, Slot All									
EVM All (%)	2.39		2.75	2.31					
EVM Phys Channel (%)	2.38		2.93	2.31					
EVM Phys Signal (%)	2.45		2.55	2.28					
Frequency Error (Hz)	-997.03 ±	:252	0.00						
Sampling Error (ppm)	0.00		0.00	0.00					
I/Q Offset (dB)	-47.68		-47.68	-47.68					
I/Q Gain Imbalance (dB)	-		-						
I/Q Quadrature Error (°)	-		-						
OSTP (dBm)	-32.53		-32.53	-32.53					
Power (dBm)	-25.19		-25.19	-32.55					
Crest Factor (dB)	10.48		10.48						

Mobile Test Summit Korea 2024

THANK YOU

www.rohde-schwarz.com/kr