Modern Methods of Absolute & Residual Phase Noise Tests on CW and Pulsed Signals

me to the

Dr. Wolfgang Wendler, Rohde & Schwarz

Modern Methodsof Absolute & ResidualPhase Noise Tests on CW and Pulsed Signals

Content

I Motivation

- Phase noise test with spectrum analyzer/phase noise tester
- Architecture of R&S FSWP
 - Analog Signal Path
 - Digital Signal Path
 - FFT and Cross-Correlation
- Instrument Features and Instrument Performance
 - Sensitivity
 - Pulsed phase noise
 - Additive/residual phase noise
 - Jitter analysis
 - VCO measurements
 - Verification
- Conclusion

What is Phase Noise?

Phase Noise Important in Digital Modulation

Modulation quality (phase error, EVM) is degraded by phase noise

Phase Noise Important in Communication Systems Transmitters

Adjacent Channel Power

Radar Applications – Moving Target Indication

High phase noise in radar LO spreads clutter signal and masks desired low-level target response

Measurement with Spectrum Analyzer FSW-K40 / FPS-K40

• 2 modes:

1.) "**Swept**": "classical", display spectrum trace right of carrier logarithmic

2.) "IQ FFT": run signal processing on captured IQ data

- "IQ FFT" is more powerful, offering:
 - Higher measurement **speed**
 - Much better frequency tracking and correction function
 - AM rejection (measure ONLY phase noise, REMOVE AM noise)
 - More measurement results (e.g. level variation, frequency vs time)
 - ("IQ FFT" uses the same signal processing DLL as used in the FSUP)

Instruments supported:

Dedicated Phase Noise Tester R&S FSWP

- I New Concept, it's time for a digital phase detector
 - A/D converters with 100 MS/s achieve -173 dBc/Hz wideband noise for full scale input
 - Middle-class FPGAs offer more than 2000 multipliers
 - Filters with more than 200 dB stopband attenuation
 - Data paths with 48 bit dynamic

Differences: R&S FSW-K40 – R&S

	Spectrum Analyzer FPS & K40	Spectrum Analyzer FSW & K40	Phase Noise Analyzer FSWP
Measure Phase Noise	✓	\checkmark	✓
Pulsed Phase Noise	×	×	\checkmark
Measure VCO's (phase noise)	\checkmark	\checkmark	\checkmark
Dedicated VCO Measurements	×	×	\checkmark
Cross Correlation (improve phase noise performance)	×	×	✓
Sensitivity (1 GHz, 10 kHz Offset)	-110 dBc/Hz	- 135 dBc/Hz	- 172 dBc/Hz
AM Noise Suppression	\checkmark	\checkmark	\checkmark
AM Noise Measurement	×	×	\checkmark
Additive Phase Noise	×	×	\checkmark

9

R&S Signal and Spectrum Analyzers

R&S FSWP - Phase Noise and VCO Tester

- I Signal- and spectrum analyzer and phase noise tester in one box
- Unrivalled phase noise performance of local oscillators for phase noise measurements
 - Cross correlation
 - Ultra low phase noise reference for high end applications
 - AM noise measurment with cross correlation (PM/AM simultanously)
- Measurement of pulsed phase noise by push of a button
- Internal source (up to 18 GHz) for residual/additive phase noise measurements
 - Without ext. phase shifter , just connect the DUT
- Based on high end signal and spectrum analyzer R&S FSW
 - Same user interface with touch screen
 - Channel concept
 - 80 MHz analysis bandwidth

Analog Signal Path

100 Msamples/s, 16bit 20 log 2¹⁶ + 10*log 100MHz = 176 dBc/Hz

- Two loosely coupled reference sources (PLL bandwidth < 0.1 Hz)
- Analog I/Q mixer with low- or zero-IF
 - IF depends on frequency offset to be measured
 - Optimized to avoid spurious emissions

Digital Signal Path – FM Demodulator

- I PM signal has phase wraps at $\pm \pi$. No filtering or FFT possible.
- FM demodulator preferred to digital PLL due to its simplicity
- FM demodulator frequency response decreases with 20 dB per decade toward DC
 - Analog FM demodulators are insensitive close to the carrier
 - White noise, e.g. quantization noise, must be hold below the FM slope
 - 48 bit signal dynamic do the job!

FFT and Cross-Correlation

- Spectrum is divided into half decades (1 Hz to 3 Hz, 3 Hz to 10 Hz, ...)
- Result is the magnitude of cross-correlation averages

$$\hat{S}_{YX} = \frac{1}{N} \cdot \left| \sum_{i=0}^{N-1} Y_i \cdot \operatorname{conj} (X_i) \right|$$

14

R&S FSWP- Phase Noise and VCO Tester

R&S FSWP Performance

■ Typical noise floor (10 seconds measurement time, 10 % RBW)

Phase Noise of High End OCXO

R&S FSWP-B61, Cross-Correlation (low phase noise),

• Specification:

Phase noise sensitivity with R&S®FSWP-B60 cross correlation option

r mput	Offset frequency from the carrier										
equency	1	Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 M	Hz ≥∶	30 MHz
0 MHz		-96	-128	-140	-158	-170	-170	-17	0		
00 MHz		-76	-108	-136	-163	-170	-173	-17	5 –1	175	-175
GHz		-56	-88	-116	-143	-166	-173	-17	'3 –1	173	-173
GHz		-46	-78	-106	-133	-156	-158	-16	i3 —1	170	-170
GHz		_39	-71	_99	-130	-152	-153	-15	7 _1	166	-166
0 GHz		Phase noise sensitivity with R&S [®] FSWP-B61 cross correlation (low phase noise) option									
6 GHz		Start offset 1 Hz, correlation factor = 1, frequency reference internal, internal reference loop bandwidth 30 Hz, signal level \geq 10 dBm									
6 GHz		Specified values in dBc (1 Hz). For typical values subtract 6 dB.									
0 GHz		RF input Offset frequency from the carrier									
		frequency	1 Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz	≥ 30 MHz
		10 MHz	-108	-130	-142	-160	-170	-170	-170		
		100 MHz	-92	-115	-140	-166	-170	-173	-175	-175	-175
		1 GHz	-72	-95	-120	-150	-166	-173	-173	-173	-173
		3 GHz	-62	-85	-110	-140	-156	-158	-163	-170	-170
		7 GHz	-55	-78	-103	-133	-152	-153	-157	-166	-166
		10 GHz	-52	-75	-100	-133	-152	-153	-157	-173	-175
		16 GHz	-48	-71	-96	-129	-148	-149	-153	-170	-171
		26 GHz	-44	-67	-92	-125	-144	-145	-149	-166	-167
		20 0112								125	

R&S FSWP-B61, Cross-Correlation (low phase noise),

• The difference in performance can be seen with calibration of synthesizer 2

AM/PM Noise of DRO and X SAW Phase Noise

Phase Noise Measurement with external Harmonic Mixers

Phase Noise Measurement with external Harmonic Mixers

MultiView 📰 Phase Noise 🛛 💉 Sp	pectrum 🚶 💌	· ·				
Signal Frequency 25.800000 GHz RBW Signal Level 3.02 dBm XCORR Facto	10.0 % or 10	SGL				
Att U dB Meas Lime	 22 s 1 View DN Smth 1% Spur 6dB o2Clow DI 	Meas: Phase Noise				
1 Noise Spectrum	100 Hz	N SHUT 1% Sput OdB 44 New PN Shut 1% Sput OdB				
		1.000 Hz -32.60 dBc/Hz				
-40rdBc/Hz		10.000 Hz -61.34 dBc/Hz				
Non la		100.000 Hz -78.21 dBc/Hz				
-50 dBd(Hz		1.000 kHz -104.26 dBc/Hz				
644		100.000 kHz -129.92 dBc/Hz				
-60 dBc/Hz		1.000 MHz -131.87 dBc/Hz				
-70 dBc/Hz	leasurement at 51.6 GHz w	lith one mixer, no xcorr 70 dBe				
-80 dBc/Hz	Monourromant at E1 6 CI					
	Measurement at 51.0 G	TZ WITH TWO THIXERS, XCON				
-90 dBc/Hz		-90 dBc				
-100 dBc/Hz		-100 dBc				
-110 dBc/Hz		-110 dBc				
-120 dBc/Hz		-120 dBc				
Measurement at 25.8 G	Hz directly with ESWP26 a	ad xcour				
-130 dBc/Hz		5N3 -130 dSP				
1.0 Hz	430 1300 3000 5000 Frequency Offset	18000 79000 19000 19000 1 1.0 MHz				
2 Integrated Measurements						
Range Trace Start Offset Stop Offset	t Weighting Int Noise F	PM FM Jitter				
1 1 1.000 Hz 1.000 MHz	-38.36 dBc 978.76 mº/	17.08 mrad 209.816 Hz 105.379 fs				
		Ready				

Phase Noise Measurement with external Harmonic Mixers

R&S FSWP – Pulsed Phase Noise

Complete Characterization of Pulsed Signals – in One Box

I FSWP-K4

I Measurement of phase noise of pulsed signals

I FSWP-K6

- I Automatic detection of RF pulses
- I Measures pulse envelope parameters
 - I Timing (e.g. Width, Rise/Fall Time, PRI, etc.)
 - I Amplitude (e.g. Peak Power, Average On, etc.)
 - I Phase / Frequency
- I Different Measurement Displays
 - I Pulse statistics
 - I Parameters over time (i.e. phase vs. time)
 - I Parameter over all pulses (trending)
- 1 80 MHz analysis bandwidth

R&S FSWP – FSWP-K4

Defininition Measurement Gate

ul <mark>pulse</mark> ?hase.Noise	9	Stat Main 1711
Preview		
Show Preview On Off	l Magnitude	• 1AP Clrw
Settings	20 dt	
Meas Time 15.0 µs	40 dyn-	
Pretrigger 1.0 µs	M ^{raes} — ^N MA Anaral Alimin universitation and	enter Marin Judiyarda
	CF 2.0 GHz 1001 pts	1.5 µs/
Pulse Settings	Gate Settings	
Pulse Detection Auto Manual	Gate Type Level Edge Gate De	lay 150.0 ns
Pulse Rep Interval 10.0 µs	Gate Level -26.0 dBm Gate Le	ngth 800.0 ns
	Execution of fact	10.0

Pulse desensitization (dB) = $20 \text{ Log}10(\tau/T)$ Gating: reduction of noise floor (dB) = $10 \text{ Log}10(\tau/T)$ Overall reduction of sensitivity only: $10 \text{ Log}10(\tau/T)$

R&S FSWP – FSWP-K4

... and Show Everything on one Sight

I Phase Noise
I AM Noise
I Pulse in Time Domain
I Pulse in Frequency Domain

R&S FSWP – FSWP-B64

Residual/Additive Phase Noise Measurement

Additive Phase Noise – Digital Phase Demodulator

- Internal hardware automatically reconfigures when "Additive" is selected
- No phase detector or need for quadrature no phase shifter
- Greatly simplifies measurement setup and calibration
- Internal Low Noise Synthesizer as DUT stimulus

R&S FSWP – FSWP-B64

Residual/Additive Phase Noise Measurement

FSWP - External LO Inputs

Radio Frequency	On Off	
External	Config Test Setup	
Mixer	Input Coupling	
Baseband	Local Oscillator	

Additive Phase Noise – Digital Phase Demodulator

- No phase detector or need for quadrature no phase shifter
- Greatly simplifies measurement setup and calibration
- External Low Noise Synthesizer as DUT stimulus can be selected
 - High end source can be used
 - Support of freq. converting DUTs is possible

Using External LOs for Residual Phase Noise

- When the internal source doesn't have enough drive, correct pulse modulation, or frequency an external LO may be used
- External LO connectors are provided on FSWP front panel with Option B64
- FSWP firmware Beta 1.40 provides control for these inputs
 - FSWP 1.40 final firmware will be released by the end of Dec 2016

Simplified Residual Noise Setup Using an External Synthesizer

Cancellation of Source Noise, Using FSWP External LO Inputs

- This slide shows the phase noise of an R&S SMF signal generator at 10 GHz (green trace). Set up as in the previous slide.
- The yellow trace shows the residual noise floor and demonstrates the excellent source noise cancellation of FSWP

Phase Noise Measurement of Frequency Converter (two converter method)

- Two identical up or down converters may be used
 - Converter under test directly supplies FSWP RF input
 - Second converter supplies the local oscillator signal for FSWP
 - Since both converters are identical FSWP measures the combined phase noise, 3-dB higher than DUT alone.
- An external synthesizer could also be used in place of the FSWP internal source, if required
- A three converter setup allows measurement of the DUT only and noise of the two LO converters is reduced by cross correlation.

Residual Phase Noise Measurement for Frequencies > 18 GHz

For frequencies > 18 GHz an external I-Q mixer may be used

- An external signal generator drives both the DUT and mixer LO
- Mixer I-Q outputs are connected to FSWP's baseband inputs
- From the input menu select the Baseband tab and select the ON radio button

Date: 1 NOV 2016: 16:33:39

Ka-Band High-Power Residual Noise Set Up,

(Using an External I-Q Mixer)

- For frequencies > 18 GHz an external I-Q mixer may be used to extend FSWP's frequency range
- Booster Amp provides high drive power for DUT
 - Phase noise of booster amp is subtracted out of measurement
- Directional coupler limits input power to mixer.

Noise Suppression by IQ mixer at 25.8 GHz

39

Example of an Amplifier Residual Phase Noise

Correlation between Phase Noise and Jitter

Measurement Instruments

I Time Domain (Oscilloscope)

- Direct method for measuring jitter
- Measures TIE, Period Jitter, Cycle-to-Cycle Jitter
- Measures RMS or Peak-to-Peak Jitter
- Measures data or clock signals
- Limited sensitivity (100 1000 fs)

I Frequency Domain (Phase Noise Analyzer)

- · Calculates jitter from phase noise
- Measures RMS Jitter
- Measures clocks, not random data streams
- Easy to separate random and discrete jitter components
- Highest sensitivity (<5 fs)

Jitter Measurements with R&S FSWP

The spur list- random jitter and periodic jitter

Jitter Measurements with R&S FSWP

Random jitter- define ranges + listing of discrete and random jitter

■ All parameters at one view

VCO parameter and phase noise

VCO measurements R&S FSWP

I Harmonic Power

VCO measurements R&S FSWP

Spot Noise versus Tune

Phase Noise at Different Offsets

Accredited Calibration of LPN by DAkkS-Laboratory Messgerätebau Memmingen

Material-Number: 5026.6520.02

Certificate by D-K-15195-01-00

4. Phase Noise at 100MHz						
Frequenc /MHz	offset.	Theoretical 1) dBc/Hz	DUL dBc/Hz	Actual dBc/Hz	Expanded uncertainty of measurement /dB	
,						
100	1 Hz		<- 73	-82.5	+2.6/-2.6	
	2 Hz		<- 84	-91.2	+2.6/-2.6	
	5 Hz		<- 95	-104.5	+2.6/-2.6	
	10 Hz		<-105	-114.6	+2.6/-2.6	
	20 Hz		<-115	-123.7	+2.6/-2.6	
	40 Hz		<-124	-132.6	+2.6/-2.6	
	95 Hz		<-135	-142.3	+2.6/-2.6	
	100 Hz 2)	-141.9			*1)	
	105 Hz		<-135	-141.6	+2.6/-2.6	
	220 Hz		<-145	-150.6	+2.6/-2.6	
	550 Hz		<-145	-148.7	+2.6/-2.6	
	1kHz		<-160	-164.6	+2.7/-2.7	
	2kHz		<-161	-170.8	+2.7/-2.7	
	10kHz 3)	-182.8			*1)	
	100kHz 3)	-189.8			*1)	
	1MHz		<-170	-194.2	+9.0/-2.0	

1. Comparison - NIST Data (ISO/IEC 17043)

Frequency	Ref NIST.	MU Ref (k = 2)	Measured value	EN Value	MU (k = 2)
[Hz]	[dBc(Hz)]	[dB]	[dBc(Hz)]	1	[dB]
1 Hz	-81.5	+1.1/-1.4	-80.2	0.46	+2.6/-2.6
2 Hz	-90.5	+1.1/-1.4	-88.9	0.55	+2.6/-2.6
5 Hz	-102.7	+1.1/-1.4	-101.2	0.54	+2.6/-2.6
10 Hz	-112.6	+1.0/-1.4	-111.2	0.50	+2.6/-2.6
20 Hz	-122.5	+1.0/-1.4	-121.3	0.43	+2.6/-2.6
40 Hz	-132.0	+1.0/-1.4	-130.9	0.36	+2.6/-2.6
95 Hz	-142.6	+1.0/-1.4	-141.8	0.31	+2.6/-2.6
160 Hz	-148.5	+1.0/-1.4	-147.8	0.27	+2.6/-2.6
205 Hz	-150.7	+1.0/-1.4	-149.2	0.50	+2.6/-2.6
500 Hz	-159.5	+1.0/-1.4	-159.1	0.07	+2.6/-2.6
1000 Hz	-165.1	+1.0/-1.4	-164.9	0.11	+2.7/-2.7
2000 Hz	-171.1	+1.0/-1.4	-170.5	0.23	+2.7/-2.7

Table 7: Measurement results from the comparison with an LPN oscillator at a carrier frequency of 100 MHz

$$|E_n| = \frac{|x - X|}{\sqrt{U_{\text{lab}}^2 + U_{\text{ref}}^2}}$$

x - X: Deviation between measured value and reference value

*U*_{lab}: Expanded uncertainty of measured value

U_{ref}: Expanded uncertainty of reference value

