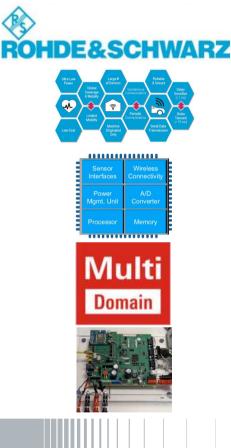
Debugging of Embedded IoT Systems with a Multi-Domain Oscilloscope

Leonardo Nanetti, BDM Oscilloscopes – South Europe Guido Schulze, Product Manager Oscilloscopes Feng Xie, Market Segment Manager - IoT


Webinar – January, 8th 2017

Outline

- I Introduction of Rohde & Schwarz
- I Introduction to Internet of Things and R&S Portfolio
- I Challenges for Design and Test of Embedded Wireless Devices
- I The R&S[®]RTO Oscilloscopes for Testing Multi-Domain Applications
- I Test Examples with M2M IoT module

09.Feb.17 Debugging of Embedded IoT Systems

2

Rohde & Schwarz - The Expert in

Test & measurement Broadcast and media Secure communications Cybersecurity Radiomonitoring and radiolocation

The company group at a glance

- History
 Established 1933 in Munich, Germany
- Type of enterprise
 Independent family-owned company
- I Global presence In over 70 countries, approx. 60 subsidiaries
- Net revenue
 EUR 1.92 billion (FY 15/16, July through June)
- Export share
 85 percent
- I Employees

10000 worldwide, with approx. 6000 in Germany

I Success

A leading international supplier in all of its fields of business

ROHDE&SCHWARZ

09.Feb.17 Debugging of Embedded IoT Systems

4

Business fields

Test and Measurement	Broadcast and Media	Secure Communications	Cybersecurity	Radiomonitoring & Radiolocation	
 T&M instruments and systems for Wireless communications General purpose electronics Aerospace & defense applications 	 Broadcast, T&M and studio equipment for Network operators Broadcasters Studios Film industry Manufacturers of entertainment equipment 	Communications systems for Air traffic control Armed forces Encryption technology for Armed forces Government authorities Critical infrastructures	IT security products for • Economy • Authorities	 Radiomonitoring equipment for Regulatory authorities Homeland and external security Network operators Radar intelligence systems 	
Service					
ROHDE&SCHWARZ 09.Feb.17 Debugging of Embedded IoT Systems 5					

Customers and markets

Manufacturers of mobile radio and other wireless terminal equipment

Operators of wireless communications and broadcast networks

Electronics manufacturers

Electronics service providers

Aerospace and defense

Studios and broadcasters

Government authorities and other public sector customers

Companies of all types and sizes

Leading-edge solutions

R&S®CMW500 Universal test platform for all common mobile radio and wireless technologies

R&S®ESMD Compact high-end receiver for all radiomonitoring tasks

R&S®RTO Fastest oscilloscope on the market with the world's first digital trigger

R&S[®]FSW Signal and spectrum analyzer with outstanding performance

R&S®SDTR Military radio based on state-of-the-art software defined radio (SDR) technology

R&S[®]SITLine ETH40G Fastest Ethernet encryptor (40 GBit/s)

R&S[®]QPS200 Latest generation millimeter wave security scanner for airports

09.Feb.17 Debugging of Embedded IoT Systems

7

Rohde & Schwarz around the world

London

São Paulo

Vienna

ROHDE&SCHWARZ Debugging of Embedded IoT Systems 09.Feb.17 8

Production plants with high manufacturing depth

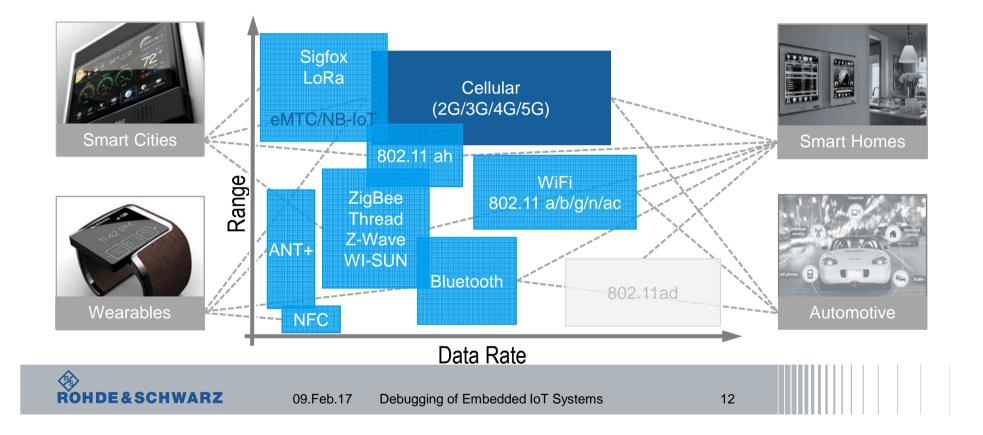
- I Quality made by Rohde & Schwarz Most products are manufactured in Germany; additional plants in the Czech Republic, Singapore and Malaysia
- High manufacturing depth
 To maintain independence, flexibility and quality
- I Maximum production flexibility To handle a wide variety of products and changing batch sizes and to quickly respond to changing market requirements
- Short delivery times
 Maximum of four weeks for off-the-shelf products
- I Development and production hand in hand

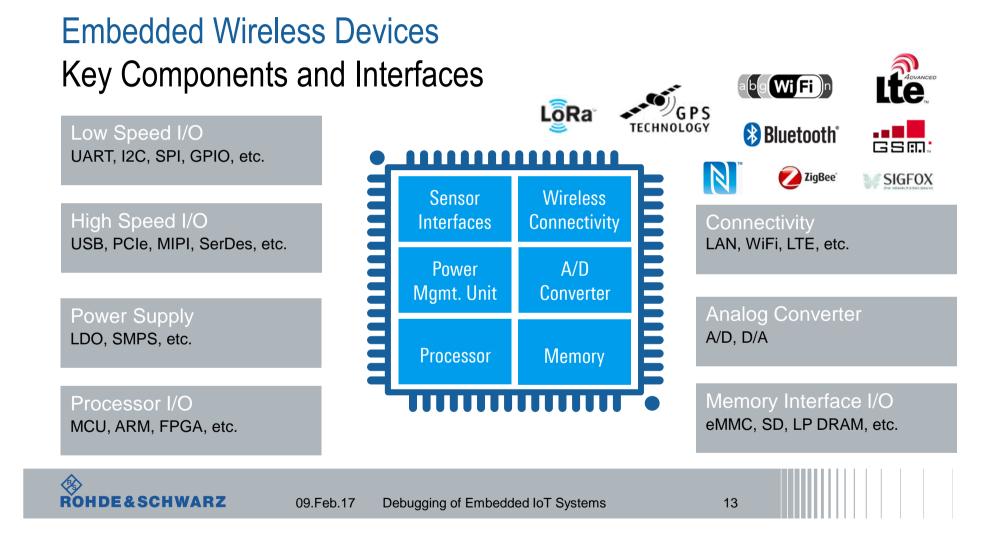
Short paths and close collaboration between production sites and development centers

ROHDE&SCHWARZ

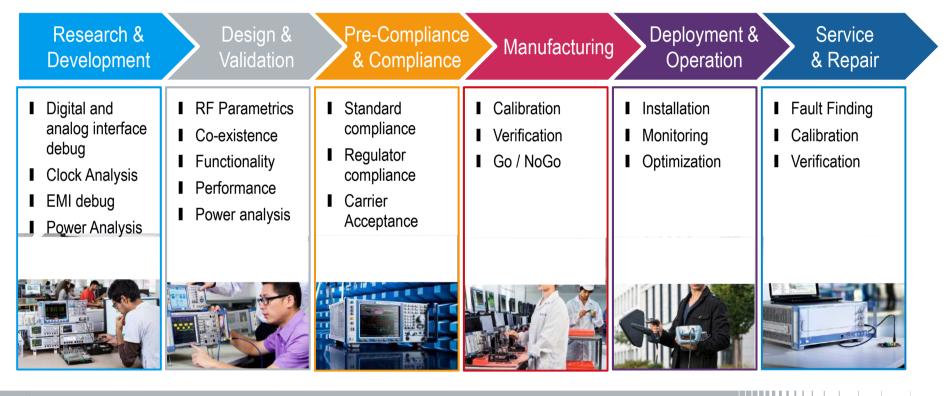
09.Feb.17 Debugging of Embedded IoT Systems

Introduction to Internet of Things and Overview to R&S solution portfolio

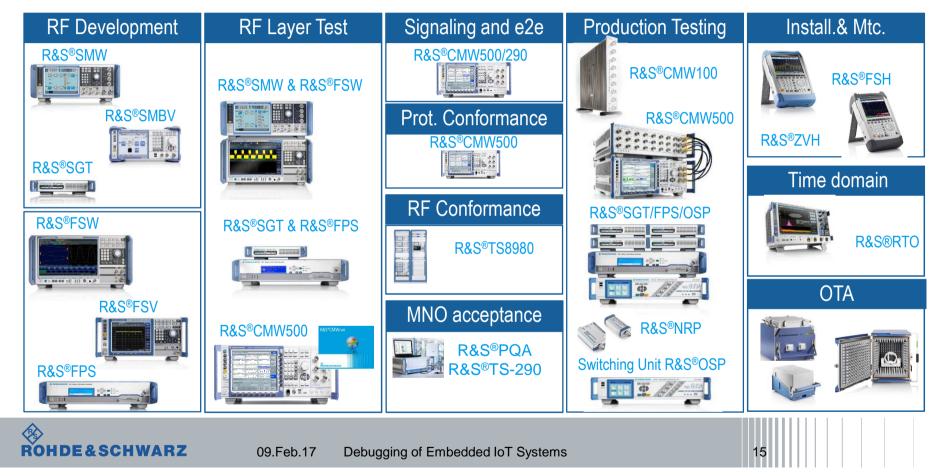

HWARZ



Internet of things becomes reality in vertical industries



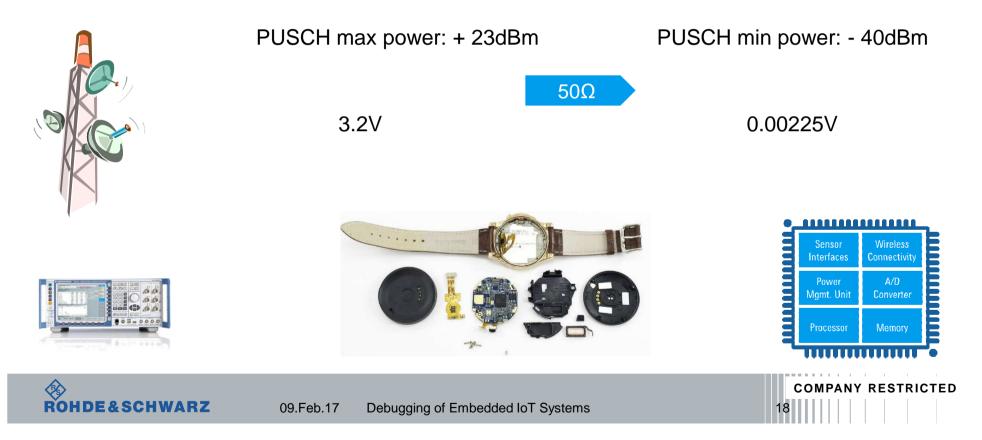
Wireless technologies enabling the Internet of Things



Testing in all phases of life cycle of IoT devices and networks

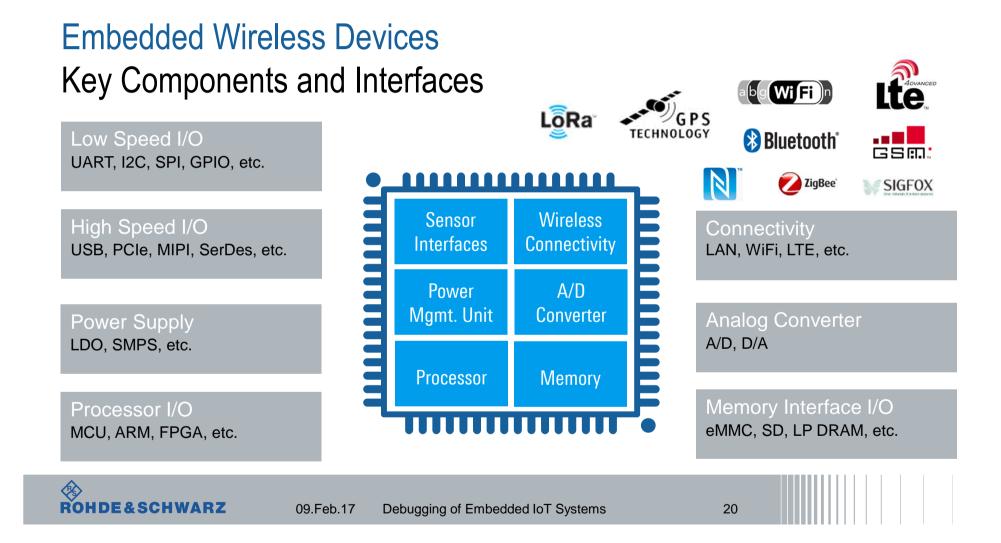
R&S Test solutions is ready for all IoT technologies

Additional portfolio



CMW the unique test solution platform for cellular and connectivity

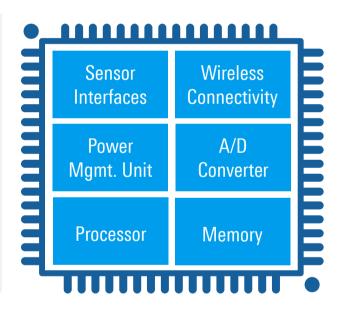
One Example with Base Station Simulation: Transmission Power Control



Challenges for Design and Test of Embedded Wireless Devices

RO

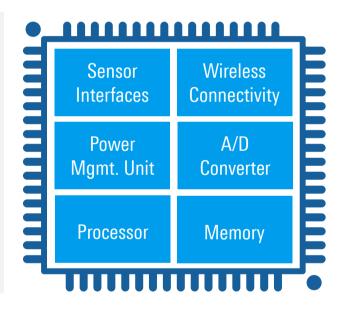
SCHWARZ



Embedded IoT Devices Design Challenges

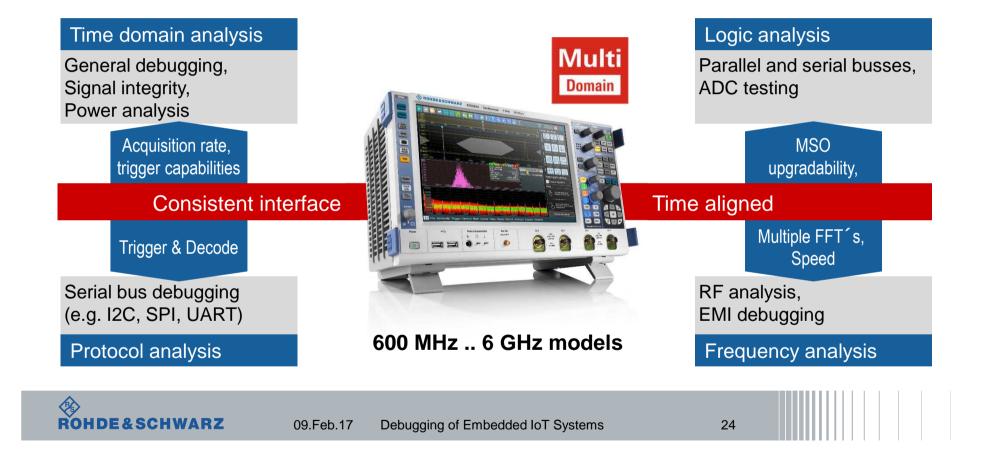
IoT devices combine resources for sensor data collection, computing and connectivity, as well as infrastructure for power management and storage.

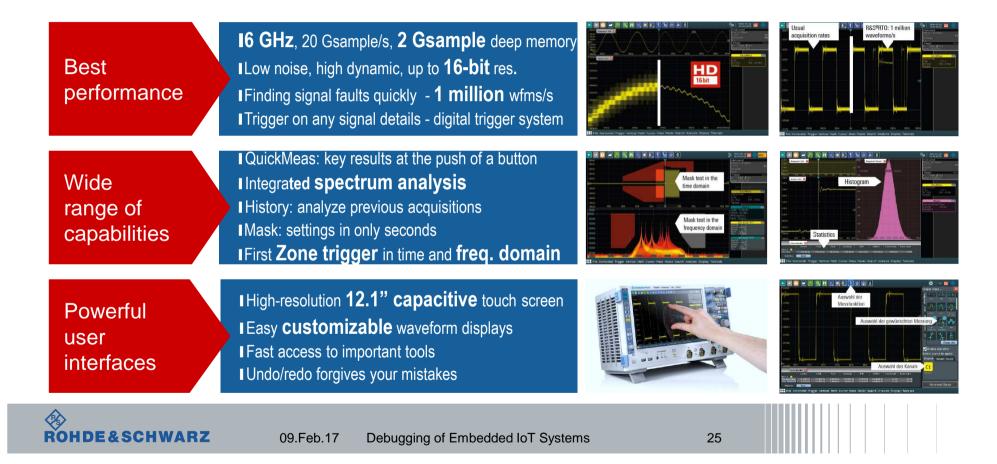
- I High integration level of different technologies
- Low cost
- "10 years" battery life time
- Reliability & Security



Embedded Wireless Devices Test Challenges

During the design, the debug and the evaluation phase there are several key test challenges:


- 1. Power: Current consumption / Power integrity
- 2. Digital: Signal integrity
- 3. RF: Wireless interface testing
- 4. Debugging of overall system



R&S®RTO Oscilloscope for Multi-Domain Applications

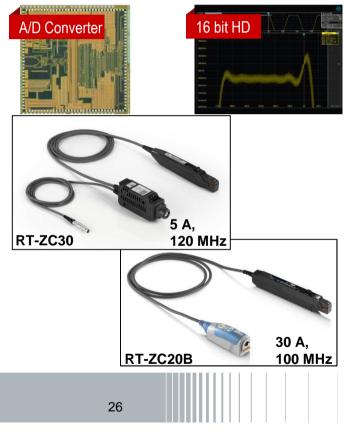
R&S®RTO Key Performance Parameters

Current MeasurementsTest Challenge #1a
Current ConsumptionUnique R&S®RTO solution: Best Capabilities and Performance

RTO key capabilities for high-sensitivity measurements

- Low noise, >7 bit ENOB ADC, high sensitivity FE
- 16 bit High Definition mode

Current probes for small currents and high bandwidth


- R&S[®]RT-ZC30 High-sensitivity current probe (120 MHz, 5 A (RMS), 60 uA noise, 1 V/A)
- R&S[®]RT-ZC20B (100 MHz, 30 A (RMS), 1 mA noise, 10 V/A)

Your benefits:

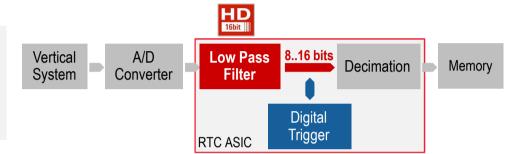
• Measure small dynamic currents with high Bandwidth

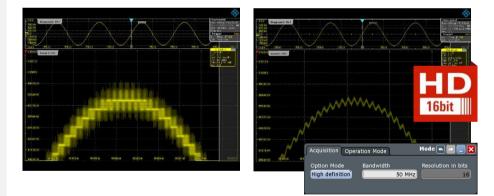
ROHDE&SCHWARZ

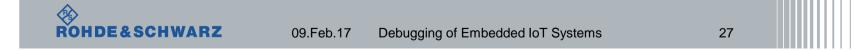
09.Feb.17 Debugging of Embedded IoT Systems

Test Challenge #1a

Current Measurements with R&S®RTO

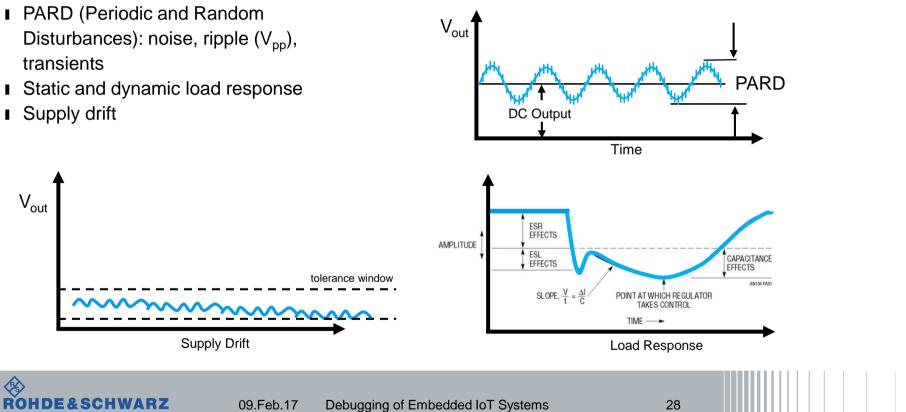

16 bit High Definition Mode


High Definition mode - system design


- Single-core monolithic ADC (10 Gsample/s, > 7 ENOBs)
- 16 bit wide processing architecture

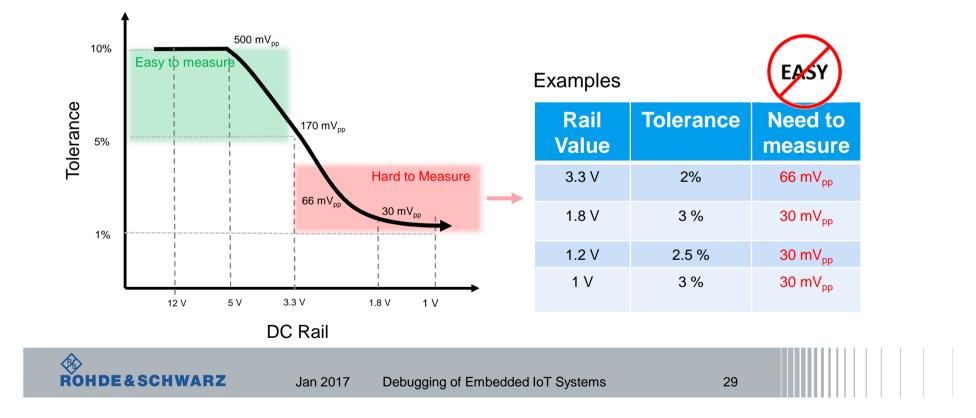
High Definition mode (R&S®RTO-K17)

- Up to 16 bit vertical resolution
- More signal details and more precise analysis results
- Real-time triggering on smallest signal details
- No aliasing, no decimation
- High acquisition rate and signal processing
- All in one box!



Power Integrity Common Measurements

- PARD (Periodic and Random) Disturbances): noise, ripple (V_{pp}), transients
- Static and dynamic load response
- Supply drift


 V_{out}

Test Challenge #1b **Power Integrity**

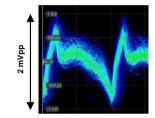
Test Challenge #1b

Power Rail Measurement Challenges Lower rail voltages and smaller tolerances

Power Rail Probing Top Concerns For Power Rail Measurements

A) Low Noise:

Measure ripple down in the mV range


B) Sufficient Offset at high vertical sensitivity

Zoom into higher voltage DC rails

C) High bandwidth

Capture periodic and random disturbances as well as high-frequency transients

ROHDE&SCHWARZ

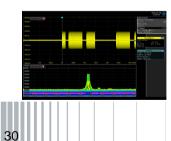
Verify tight supply voltage tolerances and observe drift

F) Ability to see coupled signals

D) Low loading:

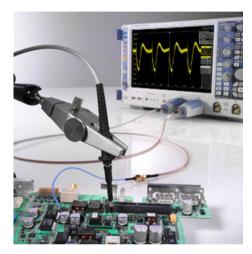
influence

Tight power supply tolerances


E) Accurate DC meas.

require low loading for low

Uncover unwanted RF noise on the power rail



09.Feb.17 Debugging of Embedded IoT Systems

RT-ZPR20 Power Rail Probe Designed for power integrity measurement

- I High bandwidth
- Low noise, 1:1 active single-ended probe
- Best in class offset compensation capability
- R&S®Probe Meter integrated
- Perfect fit to RTE and RTO oscilloscopes

Target Specifications			
Attenuation	1:1		
Probe BW	2.0 GHz		
Browser BW	350 MHz		
Dynamic Range	±850 mV		
Offset Range	±60 V		
Display Noise	120 μV_{rms} (with RTO @ 1 mV/div, 1 GHz BW)		
Input Resistance	50 kΩ @ DC		
R&S ProbeMeter	Integrated		
Coupling	DC or 10 Hz AC		

ROHDE&SCHWARZ

09.Feb.17 Debugging of Embedded IoT Systems

31

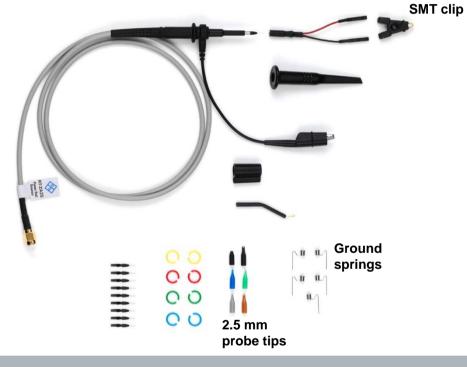
Test Challenge #1b

RT-ZPR20 Power Rail Probe


Active probe head, main cable and solder-in cables

Direct connect to SMA

50 Ω SMA coaxial solder-in (2.5 GHz BW)

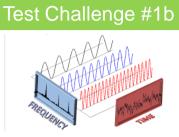


SMA to 2-pin Socket ZBX00SAMS-P (reference sell) http://www.zebax.com/index_files/page1044.htm

RT-ZPR20 Power Rail Probe 350 MHz browser and accessory

Ground spring

SMT clip



Test Challenge #1b

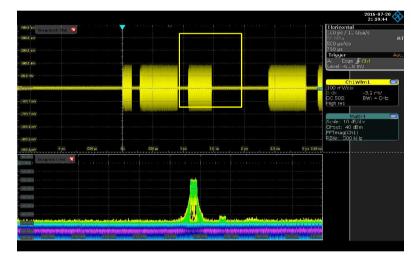
Power Integrity RTO Oscilloscopes + Power Rail Probe

Power Integrity Finding Coupled Signals

Switching (low freq FFT)

EMI/coupling (high freq FFT) (Cross-coupling from the rf path into the PDN)

Test Challenge #1b


RT-ZPR20 Power Rail Probe – Typical Applications IoT Devices: Verify Power Integrity and Debug EMI Issues

I Measurement Challenge

- Low power design of IoT devices require to check for tight DC supply voltage tolerances
- Wireless connectivity can cause unwanted coupling into power distribution network (PDN)
- Unwanted ripple, noise and interference on the power distribution network can cause performance degradation and malfunction

I Solution

- Low-noise probing with RT-ZPR20 and RTO oscilloscope
- Leading-industry FFT analysis with RTO
- Mask test to capture erratic interference

Correlation between time-and frequency-domain unveils the source of the problem: Cross-coupling from the rf path into the PDN

1.219 V

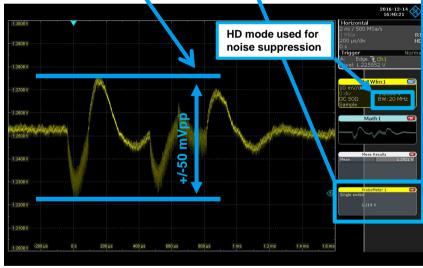
3

RT-ZPR20 Power Rail Probe – Typical Application A) Verify exact DC voltage with R&S®Probe Meter DDR4 Power Supply Qualification (with FPGAs) ProbeMeter 1 inale ender

I Measurement Challenge

- DDR4 memories have tight supply voltage requirements
- Large ripple or short voltage dips in I/O lines can cause data loss / malfunction
- Probing on I/O pins for supply voltage measurement is not possible

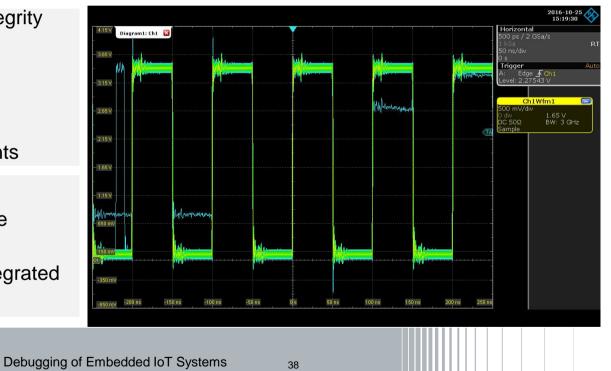
I Solution


- Use additional FPGA IO pin to route out DDR4 core power supply
- Adjust offset of RT-ZPR20 to DDR4 core voltage (1.2 V)
- Verify DC voltage and ripple

Debugging of Embedded IoT Systems 09.Feb.17

DDR4 core voltage measurement during DDR initialization

Test Challenge #2 Signal Integrity


Signal Integrity

- By definition, integrity means "complete and unimpaired"
- Likewise, a signal with good integrity has
 - Clean, fast transitions

ROHDE&SCHWARZ

- Stable and valid logic levels
- Accurate placement in time
- Would be free of any transients
- Evolving technology makes it increasingly difficult to produce and maintain complete, unimpaired signals in highly integrated embedded designs

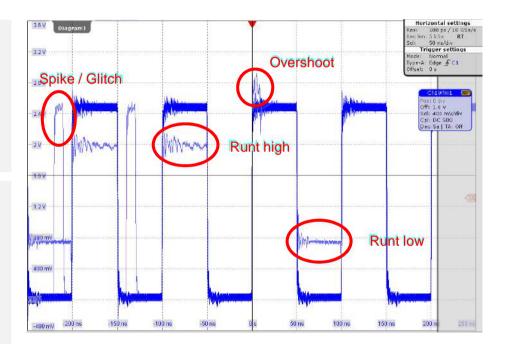
09.Feb.17

Signal Integrity Debug Checklist

Check digital signals for common symptoms of signal integrity problems:

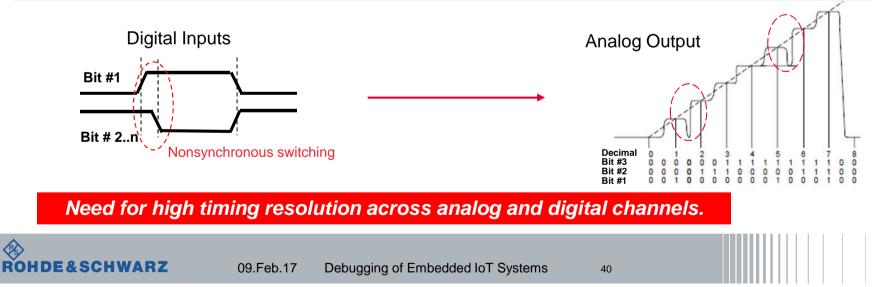
- Runts
- Glitches
- Slow rise time
- Setup and hold violations

Analyse signals for:

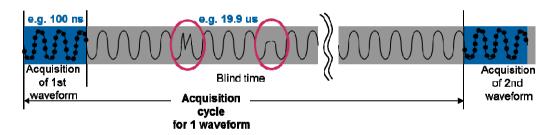

- Overshoot, Undershoot
- Droop
- Non monotonic edges
- Amplitude problems
- Pulse width
- Noise

With what confidence are we able to capture these effects - quickly?

ROHDE&SCHWARZ


09.Feb.17 Debu

Debugging of Embedded IoT Systems


Signal Integrity Common Circuit faults – DAC Glitches

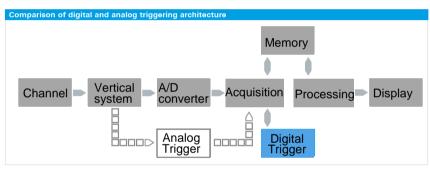
- I Glitches in D/A converters can occur with any change of the input code at the output of a DAC
- Common error sources:
 - Nonsynchronous switching times.
 - Different switching speed of the logic parts in dependency of the slope direction.
 - Interference over parasitic capacitance into the signalling paths.

Signal Integrity Unique R&S[®]RTO solution: Fastest Acquisition

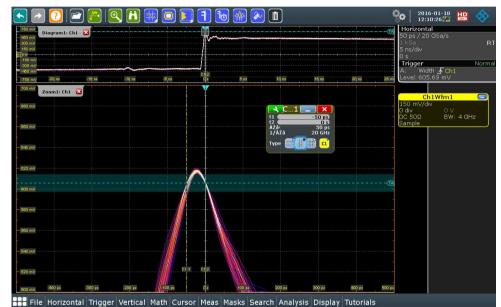
- The R&S[®]RTO has minimized blind times due to an dedicated acquisition ASIC:
 - high integration level (14 million gates)
 - massive parallel high-speed paths

Your benefits:

- Sees more than traditional oscilloscopes with 1 Mio wfms/s
- Detects rare signal faults reliable and very fast



Test Challenge #2


Signal Integrity Unique R&S[®]RTO solution: Digital Trigger

 Digital trigger system uses data of 10 GHz A/D converter

Your benefits:

- Trigger on any detail you see
- Minimum trigger jitter
- Very high sensitivity

Stable trigger on \leq 50 ps pulse width of an overshoot

Test Challenge #3 **RF Signal Analysis**

RF Signal Analysis Unique R&S[®]RTO solution: Integrated FFT-based Spectrum Analysis

I Spectrum analyzer like operation

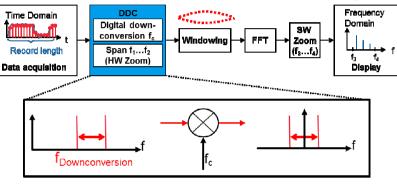
Set START, STOP, SPAN and RBW

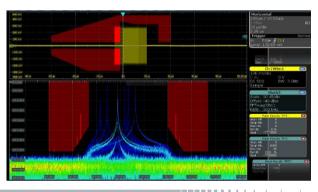
I Overlapping FFT

Fast and accurate detection of rare events

I Digital down-conversion (DDC)

- FFT done on the selected frequency range
- Higher resolution compared to conventional FFT


I Zone Trigger in Frequency Domain


I ... and additionally

- Up to 4 channels in parallel
- Correlated analysis of signals in time- & and frequency domain

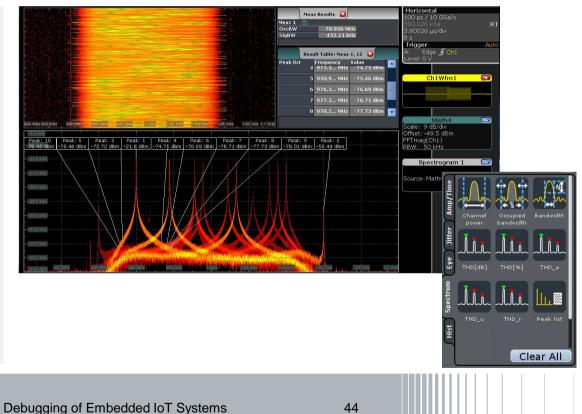
ROHDE&SCHWARZ

Debugging of Embedded IoT Systems 09.Feb.17

R&S®RTO RF Signal Analysis

Advanced Spectrum Analysis with RTO-K18

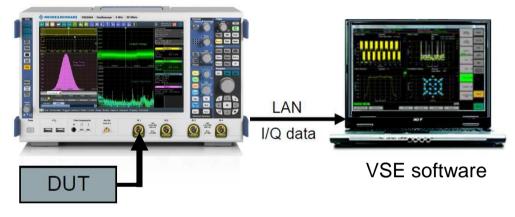
09.Feb.17


- Spectrogram visualization of changes vs. time:
- Power vs. time
- Frequency vs. time

Peak list - visualization in frequency domain

- Automatic labeling
- Threshold level for peak detection

Log-Log scaling


ROHDE&SCHWARZ

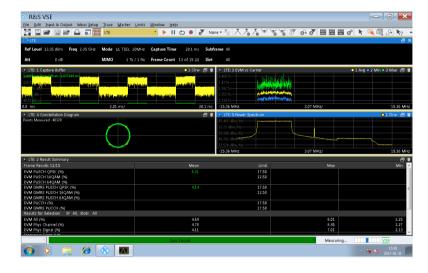


R&S[®]RTO RF Signal Analysis Signal Processing

Vector Signal Explorer SW:

- I/Q Analyzer
- Analog Demodulation
- Vector Signal Analysis (VSA)
- 3G FDD
- GSM
- WLAN
- LTE
- etc.
- Universal SW tool for R&S oscilloscope and spectrum analyzers

RF Signal analysis with R&S®RTO Oscilloscope

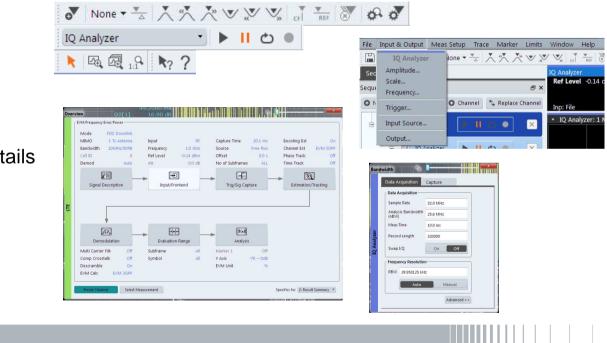

Vector Signal Explorer Software

I Base Capabilities


- Control instruments and capture IQ Data,
- Read and write IQ Files
- Basic IQ data analysis (Magnitude/Spectrum/ Statistics/IQ Vector/..)

I Additional Analysis Options

- Pulses
- Analog Demodulator (FM, AM, PM)
- GSM
- Generic VSA
- 3GPP
- WLAN
- LTE FDD /TDD


- I Operating system
 - 64 Bit software / Windows 7 /10
- I Remote system
 - Control instruments via VISA / SCPI

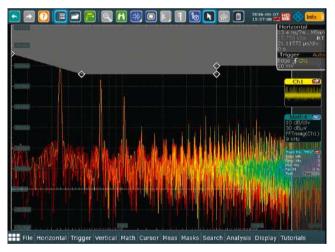
VSE User Interface

■ User interface based on FSW, but adapted to PC usage

- Menus
- Toolbars
- Context help
- Similar Dialogs
- Similar Diagrams
- Hides instrument specific details as much as possible

ROHDE&SCHWARZ

09.Feb.17 Debugging of Embedded IoT Systems


EMI debugging With the R&S®HZ-15 Probe set

Detection of EMI sources with the R&S®RTO Oscilloscope

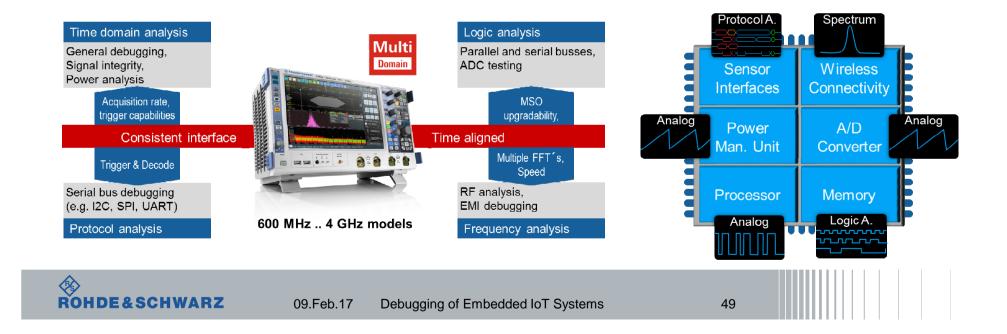
- Fast and accurate measurements
- Multiple FFT traces
- Easy configuration of masks for EMC limit testing

R&S[®]HZ-15 Probe set for E and H near-field emission measurements. 30 MHz to 3 GHz

Conducted emission test with a mask defined in the spectrum.

09.Feb.17 Deb

7 Debugging of Embedded IoT Systems


40MHz

40 MHz Clock Chip

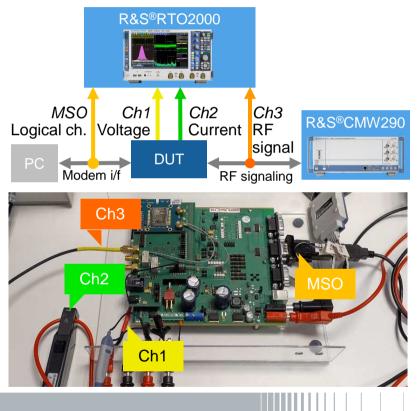
Debugging overall system functionality R&S[®]RTO Multidomain Capabilities

Time correlated analysis for the various device signals.

Test Challenge #4 Overall System Debugging

Measurement Examples:

M2M IoT module


Setup with IoT Device

LTE Cat 1 IoT module

- LTE / GSM RF Tranceiver and processor
- USB 2.0 / GPIO / I²C interfaces; Serial modem interface
- Internal flash, LPDDR2 memory interface
- Power management unit

Test Equipment

- RTO oscilloscope (current, voltage, RF, MSO: UART T&D)
- Communication tester (R&S CMW290)
- Power supply HMP4040
- PC (PuTTY)

Example 1a: Correlation of Current Consumption with Device Activities

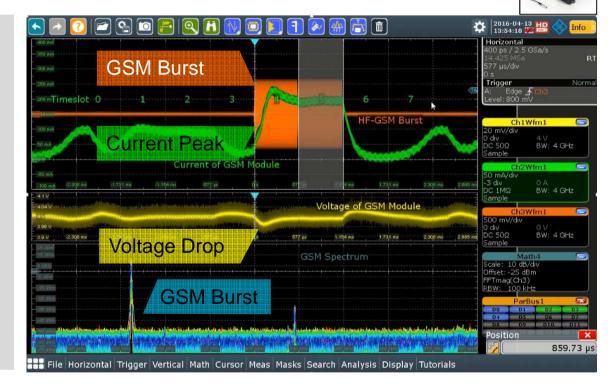
I Device activity:

 React on TPC – transmitter power control steps

I R&S RTO2000

- Triggers on current peak
- LTE signal power correlates with current consumption (green)
- Display LTE signal power differences in the spectrum with gated FFTs

Diagram2: Ch1 🔯 200 ps / 5 GSa/s LTE Burst Trigger Edge <u> 🖌 Ch5</u> vel: 454.545 mA LTE TPC power control Ch1Wfm1 Diagram4: M3 🔯 Diagram3: M4 19.99987 m\ BW: 3 GHz LTE LTE 20 (Bin 25 (0) 100 mA BW: 3 GHz Diagram1: Ch3 🔀 Current current

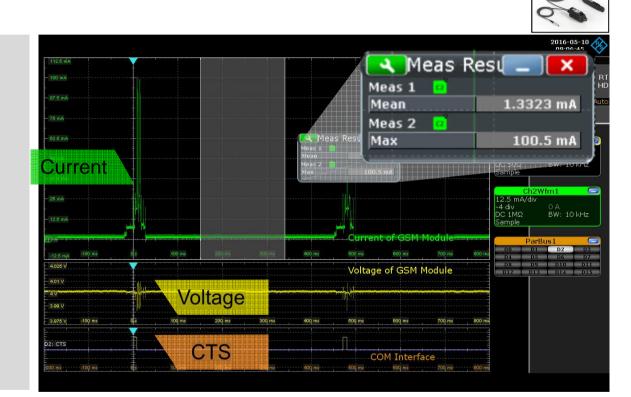

Example 1b: Correlation of Current Consumption with Device Activities

I Device activity:

 GPRS connection in different timeslots

I R&S RTO2000

- Triggers on start of GSM bursts
- GSM bursts correlate with voltage drops (yellow) and current peaks (green)
- Display spectrum on gated GSM slot


Example 1c: Minimum Current Consumption at Sleep Mode

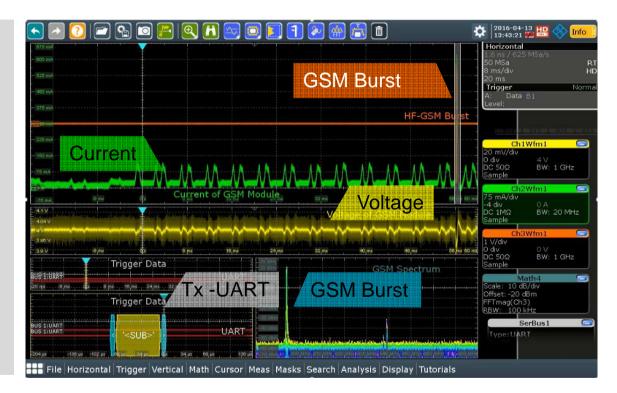
I Device activity:

 Sleep mode and reacting on paging sequences

I R&S RTO2000

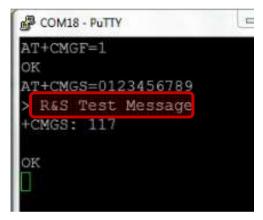
- Trigger on CTS pulse
- Measures Mean and Max current in sleep interval

09.Feb.17 Debugging of Embedded IoT Systems


Example 2: Time-correlated Debugging of System Functionality

I Device activity:

Sent SMS message (GSM)


I R&S RTO

- Triggers on sending the SMS message at the UART
- Observe the delay of the GSM burst
- Correlate GSM burst with current
- Observe GSM burst in spectrum

Example 2: Time-correlated Debugging of System Functionality (II)

PC

- Writes message (PuTTY)
- Sends message (UART)


R&S RTO Oscilloscope

- Triggers on SMS message sent on UART
- Observe the delay of the GSM burst
- Correlate GSM burst with current
- Observe GSM burst in spectrum

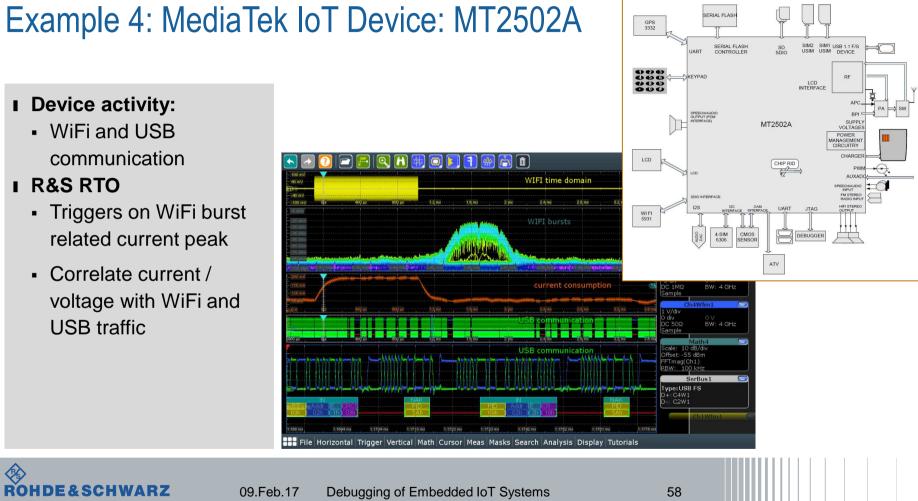
R&S CMW

- I Receives message,
- Reads message

Example 3: Analysis of the Wireless Output Signal

I Device activity:

 Uplink communication of the GSM module


I R&S RTO2000

- Use VSE Analysis SW for GSM signal analysis
 - Synchronization packets, output power, bandwidth, EVM measurements, etc.

GSM			5.	GSM	_	•	► II -	→ ● [None 👻 🛓	K X ♥ }	3		₽ №? ?	
Ref Level	7.03 dBm 0 dB	Freq / A	RFCN	902	2.4 MHz / #				P-GSM 900 ■ NB GMSK						GL Count 20
• GSM:1 M	/lagnitude	Capture							• 1 Clrw 🗗 🕯	GSM: 6 EVM			○ 1 Avg ● 2	Max • 3 Min •	4 Clrw
7.000 d8m -7.975 d8m -22 975 d8 -37 975 d8 -				n Jakas	n I napad	a a a a a a a a a a a a a a a a a a a			inconija in		und for Antoine		l <mark>hersporder</mark> Wilselander	WANNA.	
0.0 s 50.0 ms										0.5 sym 147.					
 GSM: 2 P 7.125 Usit 7.975 dBm Upper75 dB 	Check			PASS					• 4 Cirw 🗗 🖷	 GSM: 5 Modul Limit Chec -10 dBm -20 dBm -30 dBm -40 dBm 		PASS	T.	• 1 Avg	
-37.975 d8 52.975 d8 7.975 d8 7.975 d8 7.975 d8 7.975 d8 112.975 d ower -127.385 µs	m		n	مر و از رائم م الأراف الأو ال					4.732 ms	-50 dBm -60 dBm -70 dBm -80 dBm -18 MHz	And		hay	-	A.,-
2.975 dB 7.975 dB 2.975 dB 7.975 dB 7.975 dB 7.975 dB 0wer -127.385 µs	m- m- m- t,) m- 8m- I,t,t									-60 dBm -70 dBm -80 dBm		/	ha	- Ard-Af	A.,-
 Service of the service of the service	m - groß m - groß 8m - High ower vs Sk	ot Pass	1 Pass	2 Pass	3 Pass	4 Pass	5 Pass	6 Pass	4.732 ms 2 7 Pass	-60 dBm -70 dBm -80 dBm -1.8 MHz		Current	Average	Peak	Std De
2.975 dB 7.975 dB 7.9	ower vs Sk	ot Pass 0.00	1 Pass 156.25	2 Pass 312.50	3 Pass 468.75	4 Pass 625.00	5 Pass 781.25	6 Pass 937.50	4.732 ms 4.732 ms Pass 1093.75	-50 dBm -70 dBm -80 dBm -1.8 MHz -1.8 MHz • GSM: 3 Moduli EVM RMS Peak	*	Current 1.31 4.99	1.39 4.43	Peak 1.67 6.88	Std De
 - 2.975 dB - 975 dB - 127.385 µs - 65M: 4 P Slot PVT Limit Delta to Sync Current Fran Power Avg Power Peak 	m	ot Pass	1 Pass	2 Pass	3 Pass	4 Pass	5 Pass	6 Pass	4.732 ms 2 7 Pass	-50 dBm -70 dBm -80 dBm -1.8 MHz -1.8 MHz - GSM: 3 Module EVM RMS	*	1.31	1.39	1.67	Std De 0. 0.
 2.975 dB 7.975 dB<	m	ot Pass 0.00 9.0 9.0 9.0 0.0	1 Pass 156.25 -69.2 -59.6 9.6	2 Pass 312.50 -69.5 -60.5 9.0	3 Pass 468.75 -69.3 -58.5 10.8	4 Pass 625.00 -69.2 -60.3 9.0	5 Pass 781.25 -69.0 -60.4 8.6	6 Pass 937.50 -69.6 -60.6 8.9	4.732 ms 4.732 ms 7 Pass 1093.75 -69.0 -59.7 9.3	-60 dBm -70 dBm -70 dBm -1.8 MHz -1.8 MHz CSM: 3 Moduli EVM RMS Peak 95%ile Mag Error RMS Peak	** ** **	1.31 4.99	1.39 4.43 2.60 0.06 0.12	1.67 6.88	1.1 Std De 0.1 0.1
Port of the second	m July m July Bm July ower vs Sli s NSP me dBm dBm	ot Pass 0.00 9.0 9.0	1 Pass 156.25 -69.2 -59.6	2 Pass 312.50 -69.5 -60.5	3 Pass 468.75 -69.3 -58.5	4 Pass 625.00 -69.2 -60.3	5 Pass 781.25 -69.0 -60.4	6 Pass 937.50 -69.6 -60.6	4.732 ms 7 Pass 1093.75 -69.0 -59.7	-00 dBm -70 dBm -80 dBm -80 dBm -85 M-12 - 055M: 3 Modula EVM RMS Peak 95%ile Mag Error RMS	% % %	1.31 4.99 0.06	1.39 4.43 2.60 0.06	1.67 6.88 0.06	Std De 0. 0.

ROHDE&SCHWARZ

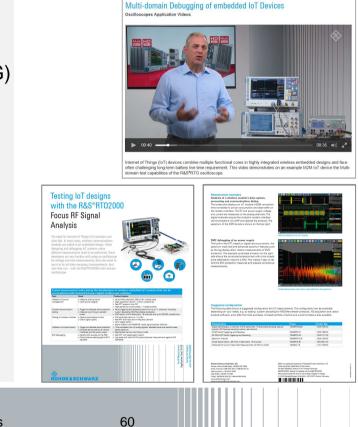
09.Feb.17 Debugging of Embedded IoT Systems

09.Feb.17

Debugging of Embedded IoT Systems

Demo Time

Measurements on TDD LTE Data card


09.Feb.17 Debugging of Embedded IoT Systems

R&S Material: Debugging IoT Designs

- I IoT Conference in Nuernberg, May 2016 http://iot-design.com/index.php/conference
- Application video: M2M IoT device (Gemalto Cinterion 2G)
 - R&S web
 - YouTube

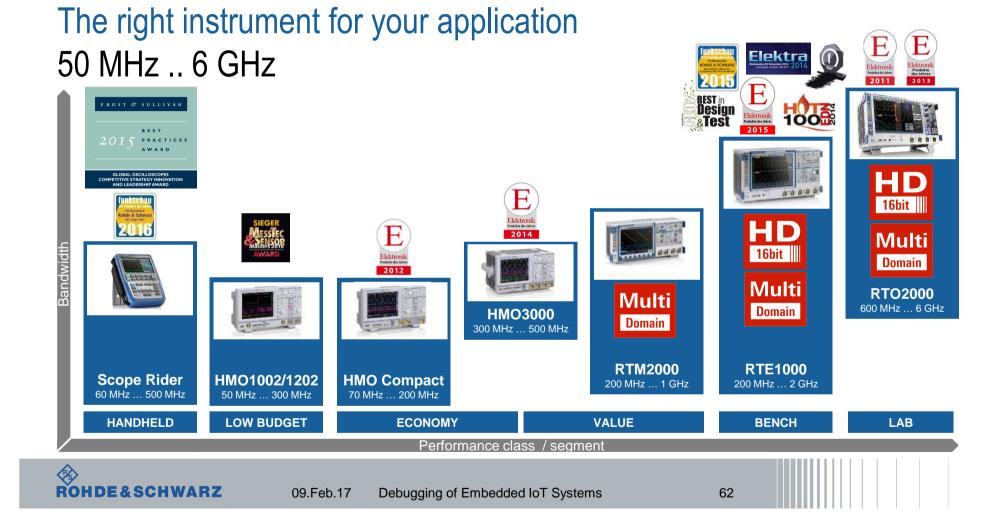
Application Cards

- Focus EMI
- Focus RF-Signal Analysis

ROHDE&SCHWARZ

Debugging of Embedded IoT Systems 09.Feb.17

Let's sum up


Powerful Embedded Wireless debug solution

I R&S[®]RTO oscilloscope supports:

- Time-correlated debugging on system level
 - Analog, logical, protocol and frequency signals
- Small current measurements
- Analysis of wireless interfaces

09.Feb.17 Debugging of Embedded IoT Systems

