Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness

1

- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

Market Surveillance Example

German regulator - online trade interventions per product category

Market Surveillance Example

German regulator - online trade interventions per product category

Be aware of Market Surveillance by TCAM / ADCO

Telecommunication Conformity Assessment and Market Surveillance

TCAM

Regulators of... EU states + EFTA states + "candidates" + ?UK?

Each regulator can decide on random checks up to 10 years after market placement and may ask for

- Test reports
- Declaration of Conformity
- Purchase of radio equipment
- Test of radio equipment
- Notes and calculations done during the risk assessment

Is there a mismatch? Is there something strange?

Joint Actions

Committee work, around 3 meetings per year.

Common Data including black-list

Administrative Cooperation - RED

- Trials
- Cross-border surveillance Campaigns
- Conformity assessment cooperation

Extra:

Administrative Cooperation - EMC

No harmonisation on sanctions among the states.

6

No Harmonisation on Sanctions among the States.

- Germany: Funkanlagengesetz ("Law of Radio Equipment")
 - Formal error → 10 kEUR
 - Test chapters omitted on purpose \rightarrow 100 kEUR
 - Valid standard version omitted → 100 kEUR
- Switzerland
 - In case of imports: private persons can be sewed
 - 1st time: 3000 CHF fine
 - Follow up in the media
 - Fulfillment centers are not responsible

Manufacturer's Homework according RED Declaration of Conformity

EU+ DoC EFTA + Manufacturer (sole responsible) "Candidates" Annex VI Notified bodies can be approached for testing, conformity assessment. including dated reference to ... NBs must be registered with a number and harmonized standard or to other technical specification listed in the "NANDO" list Precisley identified combination of radio equipment and software **Conformity Assessment** The complete set Combination of of documents is ready RED Result Radio Equipment & Precondition for an audit-like =DoC Software assessment. Art. 17 Rentention period Risk Assessment 10 years **Essential Requirements** Documentation of Art. 3 are met **Test Reports** yes no yes no Solutions adopted to meet _ DoC = Declarationthe essential requirements \checkmark \checkmark of Conformity and more The DoC stands at the end of the Conformity Assessment Procedure. **ROHDE&SCHWARZ** 9

Declaration of Conformity

Declaration of Conformity - Example taken from a Camera

Manufacturer Name and address

Reference Number

EU Declaration of Conformity

This declaration is issued under the sole responsibility of the manufacturer

We declare, that the product <xyz> is in conformity with the essential

requirements of EU directive(s)

y applying the following standards	1
EU Directive(s) and Regulation(s)	Reference of standard(s) and amendment(s)
2014/53/EU	EN 300 328 V2.1.1
	EN 301 489-1 V2.1.1
	EN 301 489-17 V3.1.1
	EN 301 489-3 V2.1.1
	EN 60950-1:2006 with the following amendment(s) to this
	standard
	A11:2009, A1:2010, A12:2011, A2:2013
	EN 62311:2008
	EN 55032:2012 (Class B)
	EN 55024:2010
2011/65/EU	EN 50581:2012
2009/125/EC (EU) No1194/2012	_

Date:

Signature

by applying the following standards

EU Directive(s) and Regulation(s)	Reference of standard(s) and amendment(s)
2014/53/EU	EN 300 328 V2.1.1
	EN 301 489-1 V2.1.1
	EN 301 489-17 V3.1.1
	EN 301 489-3 V2.1.1
	EN 60950-1:2006 with the following amendment(s) to this
	standard
	A11:2009, A1:2010, A12:2011, A2:2013
	EN 62311:2008
	EN 55032:2012 (Class B)
	EN 55024:2010
2011/65/EU	EN 50581:2012
2009/125/EC, (EU) No1194/2012	

On the radio part...

self-declaration is possible as soon as a harmonised standard is published in the Official Journal of the EU.

ROHDE&SCHWARZ

See the legally binding statement in the DoC!

11

Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

RED: Radio Equipment Directive

2014/53/EU: mandatory since June 2017

Increase of Testing Efforts

Check the standard versions: The table of contents is a good indicator for testing efforts.

Increase of Testing Efforts Example: EN 302 567 under Directive 1999/5/EC (R&TTE)

5	Testing for complian	ce with technical requirements	
5.1	Environmental con	litions for testing	11
5.2	Interpretation of the	e measurement results	11
5.3	Essential radio test	suites	12
5.3.1	Product Informa	ition	
5.3.2	Test modulation	, frequency and configuration	12
5.3.3	Spectral power	density	13
5.3.4	RF output powe	r	14
5.3.5	Transmitter unv	/anted emissions	15
5.3.5.1	Pre-scan		15
5.3.5.2	Identified en	nissions	
5.3.6	Receiver unwan	ted emissions	
5.3.6.1	Pre-scan		17
5.3.6.2	Identified en	nissions	17
Anne	x A (normative):	HS Requirements and conformance Test specifications	Table (HS-
		RTT)	

Example: "WIGIG" Standard under R&TTE

Chapter 5 of a harmonised EN standard under RED (article 3.2) describes the test procedures. The chapter 5 can be taken as a measure of testing efforts. Take a look at the chapter 5 when changing from R&TTE (old regulatory regime) to RED (new regulatory regime). You can do this kind of effort comparison with any harmonized EN standard that existed under R&TTE.

Increase of Testing Efforts Example: EN 302 567 under Directive 1999/5/EC (R&TTE)

5	Testing for compliant	e with technical requirements	11
5.1	Environmental cond	itions for testing	11
5.2	Interpretation of the	measurement results	11
5.3	Essential radio test s	uites	12
5.3.1	Product Informa	tion	12
5.3.2	Test modulation.	frequency and configuration	12
5.3.3	Spectral power d	lensity	13
5.3.4	RF output power		14
5.3.5	Transmitter unw	anted emissions	15
5.3.5.1	Pre-scan		15
5.3.5.2	2 Identified en	issions	16
5.3.6	Receiver unwant	ed emissions	16
5.3.6.1	Pre-scan		17
5.3.6.2	Identified en	issions	17
Anne	x A (normative):	HS Requirements and conformance Test specifications Table (HS-	
		RTT)	18

Example: "WIGIG" Standard under R&TTE

Increase of Testing Efforts Example: EN 302 567 under Directive 2014/53/EU (RED)

Extended table of contents in the standard

5	Testing for compliance with technical requirements	<u>1</u> 6
5.1	Environmental conditions for testing	16
5.1.1	Introduction	16
5.1.2	Normal test conditions	16
5.1.2.1	Normal temperature and humidity	<u>16</u>
5.1.2.2	Normal power source	17
5.2	Interpretation of the measurement results	<mark>1</mark> 7
5.3	Test procedure for the essential radio test suites	<mark>1</mark> 7
5.3.0	General	17
5.3.1	Product Information	17
5.3.2	Test modulation, frequency and configuration	
5.3.3	Spectral power density	
5.3.4	RF output power	
5.3.5	Transmitter unwanted emissions.	20
5.3.5.0) Introduction	20
5.3.5.1	Pre-scan	20
5.3.5.2	Identified emissions	21
5.3.6	Receiver unwanted emissions	22
5.3.6.0) Introduction	
5.3.6.1	Pre-scan	22
5.3.6.2	Identified emissions	22
5.3.7	Receiver Adjacent Channel Rejection	23
5.3.7.1	Test conditions	23
5.3.7.2	Test Method	23
5.3.8	Adaptivity (medium access protocol)	24
5.3.8.1	Test conditions	
5.3.8.2	Test method	24
5.3.8.3	Generic test procedure for measuring channel/frequency usage	
5.3.9	Transmitter unwanted emissions in the out-of-band domain	27
5.3.9.1	Test conditions	27
5.3.9.2	Test method	27
5.3.10	Occupied Channel Bandwidth	
5.3.10	1 Test conditions	
5.3.10	2 Test method	28

Example: "WIGIG" Standard under RE-Directive

More requirements

Example: 2.4 GHz ISM

EN 300 32	8 under R&TTE			for TX		for RX	
Chapter 5	Essential Test Suites	from page 35 t	to page 66 total 32 pages	from page 35	in total 29 pages	from page 64	to page 66 in total 3 pages
EN 300 32	8 under RED			for TX		for RX	
Chapter 5	Testing for compliance with technical requirements	from page 39 t	to 74	from page 39) to 69	from page 70	to 74
		i	in total 36 pages		in total 31 pages		in total 5 pages

Independent from the title the chapter 5 contains the test process steps. More steps mean more efforts.

Self-Declaration,

Agendad a published Harmonised Stand

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

Is Self-Declaration possible?

How to check the status "published" of a standard?

http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/red_en

Up-to-date Harmonised Standards refer to 2014/53/EU

Reference on title page of standard Old versions of Harmonised Standards refer to Directive 1999/5/EC Up-to-date Harmonised Standards refer to Directive 2014/53/EU.

EN 3xx xxx Version Number (Date)

Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

How to find an example of a Declaration of Conformity? Search: <manufacturer name> + 2014/53/EU + Declaration of Conformity

Manufacturer 2014/53/eu declaration of conformity	Q	Manufacturer
All News Shopping Images Videos More Setting About 26 results (0,45 seconds) PPFI EU Declaration of Conformity EC Directive(s) 2014/53/EU Ma Details regarding to the search Details regarding to the search Ma	anufacturer	ED catation of ConformityMarcia Catation of ConformityMarcia Catation of ConformityMarcia Catation of Conformity with the Directive 2014/53/EU.Marcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued under the sole responsibility of the manufacturerMarcia Catation is issued unde
BOHDE&SCHWARZ		23

How to find an example of a Declaration of Conformity? Search: <manufacturer name> + 2014/53/EU + Declaration of Conformity

EU DECLARATION of CONFORMITY (DoC)	The following harmonized standards and technical specifications have been applied:
(No. 11()	Health & Safety EN 60065:2014 (Article 3.1(a)):
his declaration of conformity is issued under the sole responsibility of the manufacturer:	EMC EN 301 489-1 V2.1.1 (Article 3.1(b)): EN 301 489-3 V2.1.0 (Draft)
ddress:	Radio Spectrum EN 303 345 V1.1.1 (Draft) (Article 3.2):
Ve declare that the DoC is issued under our sole responsibility and belongs to the following product.	Notified Body performed an EU-type examination in accordance with the requirements of Annex I
bject of the declaration:	of RE Directive and issued the EU-type examination certificate.
roduct Name Car audio with DAB radio,	Notified Body:
	UL Japan, Inc. (No. 1731)
fodel Name	4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021, Japan
	Certificate No.: ULAN
oftware Ver.	Signed for and on behalf of:
accessories N/A	
he object of the declaration described above is in conformity with the relevant Union harmonization	Place of Issue: Date of Issue:
gislation:	General Manager
adio Equipment (RE) Directive (2014/53/EU)	Engineering Div.

How to find the "right" standard version? Search in the ETSI-Portal – Search – Work Programme

5b

How to find the "right" standard? Search in the ETSI-Portal – Search – Work Programme

6

27

How to find the "right" standard? Search in the ETSI-Portal – Search – Work Programme

2017-08-02		Work	(Programme				Version 2
		Simple Search Advan	ced Search Pre-De	fined Reports Help			
		Details of 'REN/	ERM-TGSRR-	77' Work Item			
ETSI	Work Item Reference	ETSI Doc. Number	STF	Technical Body in Charge		Down	load Standard
	REN/ERM-TGSRR-77	EN 302 858		ERM TGSRR			
	Current Status (Click to View Full Schedule)	Latest Version	Cover Date	Standstill		Creation Date	
	Delivery to the EC (2016-12-12)	2.1.1	2016-12-12	View Standstill Informatio	n	2015-02-19	
	Rapporteur	Technical Officer		Harmonized Standard			
	Andreas John	Igor Minaev 🛱		Yes		View Tra	ansposition Data
Title	Short Range Devices; Transport and Traffic Telen essential requirements of article 3.2 of the Directiv vehicular radar operating in 24 GHz NB range	natics (TTT); Radar equipn /e 2014/53/EU	nent operating in the 2	24,05 GHz to 24,25 GHz or 24,03	5 GHz to 24,50 GHz r	ange; Harmonised	Standard covering the
Scope and Field of Application	HEN covering the technical requirements and mean merging of current standard parts (EN 302 858-1	asurement procedures for s and 302 858-2) to cover the	short range vehicular e essential requireme	radar operating in the 24,05 GH nts of article 3.2 of the RE-D.	z to 24,25 GHz or 24,	05 GHz to 24,50 G	Hz range; Revision ar
Supporting Organizations	JSConsulting, Continental Automotive GmbH, Val	eo Radar Systems Inc., He	ella				
	Keywords	Projects	Cluster	s	Frequencies		Mandates Directiv
	Harmonised standard RADAR RADIO RTTT SRD TESTING		Transpo	vitation			M/536 2014/53
Official Journ	al						
	2016-07-25 butscheidt Draft contributed - V 1.0.1	1 contributed for Decision in	n ERM(16)59b012 as	Draft Review after PE			
	2016-07-25 butscheidt A new draft is uploaded - resolution meeting was d	V 1.0.1 with status: Draft F uring TG SRR_25.	Review after PE - with	comment: The results of the res	solution meeting: succ	essful. The	

Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

Wireless Coexistence

Pattern area: overlap translates into an increased noise level on the wanted receiver side.

Unwanted signal adjacent to wanted signal

Wireless Coexistence Interference Mechanism

Unwanted signal Wanted signal Offset Pattern area: overlap translates into an increased noise level on the wanted receiver side. Unwanted signal with offset to wanted signal

Receiver under Interference Condition

Wanted signal receiver = receiver under interference conditions:

Can the receiver handle the interference and provide with a good performance?

Does the receiver ask for retransmission again and again while the already transmitted data is wasted (pure design)?

Does the receiver support for example a HARQ process and therefore asks for re-transmissions only when necessary (advanced design)?

Picture based on an idea from IEEE Std. 1900.2

Receiver under Interference Condition

Receiver under Interference Condition

RED Approach allows Wireless Coexistence Tests Radiated Test

Field Strength and Power Discussion

Scenario Separation distance. Interferer signal EIRP at origin. Expected fieldstrength of the "unwanted signal" at the UUT (victim). Simulation by immunity system Expected field strength at UUT. Distance between UUT and antenna for the transmission of the unwanted signal. Antenna gain.

RMS power level Calculation of the transmit power level of the unwanted signal at the antenna input.

Be careful:

Most tools allow the evaluation of power and fieldstrength conditions for "RMS". For active RF signal paths you need to consider the Peak-to-Average Power Ratio PAPR (→Crest Factor). Typical PAPR values can be derived from technical studies. A PAPR of 8 dB is often used for LTE signal types.

More details follow later.

ROHDE&SCHWARZ

Additional Factors

- number of subcarriers
- Bandwidth correction e.g. in case of transient interferers.

Crest Factor, PAPR Typical for LTE: 8 dB

Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

ROHDE&SCHWARZ

More than Minimum Performance

More than Minimum Performance – Receiver Example

61

More than Minimum Performance – Receiver Example

More than Minimum Performance – Receiver Example Selectivity: Blocking Tests

More than Minimum Performance – Receiver Example Selectivity: Blocking Tests

More than Minimum Performance – Receiver Example

Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

ROHDE&SCHWARZ

Realtime to verify Channel Occupation / Verification

2 signals share the same channel.

Addtional spectrogram would be helpful find out the time gap between the 2 signals.

ESR, ESW or FSW with realtime option could provide with "persistence mode" and with "spectrogram mode". Parameters vary due to exact technical configuration.

18:28:55 05.02.2018

C.5.3 Guidance for testing Receiver Blocking
Refresher Topics on Radio Equipment Directive

Agenda

- Who cares? Administrative Part
- Increase of Testing Efforts
- Self-Declaration, how to find a published Harmonised Standard
- Wireless Coexistence Basics: Receiver Robustness
- More than minimum Performance
- Wireless Coexistence: Adaptivity
- Further Discussion, Backup

ROHDE&SCHWARZ

4 Prominent Coexistence Cases

Coexistence Case #1: LTE FDD7 vs. ATC Radar Coexistence Case #2: LTE vs. DVB-T: Protection Ratio Coexistence Case #3: LightSquared Case (LTE 1552.5 vs. GPSL1) Coexistence Case #4: Co-Location under FCC

Cases #1, #2 and #3 address the need for blocking tests. Case #4 deals with the intermodulation effect.

Coexistence Case #1: LTE FDD7 vs. ATC Radar

System discussion from 2011.

ATC Radar in maintenance phase

Test System TS6650. See application note 1MA211_0e_Coexistence_Test_of_LTE_and_Radar.pdf

Practice 2011 + 2012

RF cable ¹⁵ Not included in the system, provided by customer.

Coexistence Case #2: LTE vs. DVB-T: Protection Ratio Recommendation

Channel edge separation: distance of victim channel edge to unwanted signal channel edge PR = Protection Ratio

		D	VB-T PF	R for 64-QAN	1 2/3 DVB-T	signal					
				(LTE UE T	PC off)						
Channel edge separation (MHz)	PR (dB)										
		10 th		50th			90th				
	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	Can STB/iDTV	Silicon STB/iDTV	Silicon USB	Can STB/iDTV	Silicon STB/iDTV	Silicon USB		
co-											
channel	13 18	13 18	NA	18 19	18 19	NA	20 22	19 22	NA		
1.	-2814	-1514	-28	-2113	-14	-23	-1412	-13	-18		
9.5	-51	-51	-43	-4847	-4942	-37	-4542	-4632	-31		
17.5	-3033	-3431	-45	-4948	-3143	-39	-4340	-4835	-32		
25.5	-6359	-5655	-47	-6157	-5246	-39	-5954	-4836	-31		
33.5	-7062	-5753	-49	-6756	-5445	-40	-6350	-5137	-31		
41.5	-7963	-6152	-49	-7356	-5345	-40	-6649	-4538	-31		
49.5	-7666	-6056	-49	-7457	-5 6 - 48	-40	-7147	-5140	-30		
57.5	-7766	-6255	-49	-7859	-5546	-40	-7052	-4837	-30		
65.5	-6354	-6352	-47	-5044	-5545	-40	-3833	-4737	-32		

77

Table 7a: DVB-T PR values in the presence of a LTE-UE interfering signal without TPC in a Gaussian channel environment at the 10th, 50th and 90th percentile: comparison between can-tuners and silicon-tuners.⁴

-45 dB as typical protection ratio at 9.5 MHz CH-edge-to-CH-edge distance to keep the defined minimum DVB-T receiver performance

Coexistence Case #3: LightSquared Case LTE at 1552.5 MHz vs. GPS at 1575.42 MHz

Original Roll-out Plan: Phase $0 \rightarrow$ Phase $1 \rightarrow$ Phase 2

Coexistence Case #3: LightSquared Case LTE at 1552.5 MHz vs. GPS at 1575.42 MHz

Original Roll-out Plan: Phase $0 \rightarrow$ Phase $1 \rightarrow$ Phase 2

Coexistence Case #3: LightSquared Case LTE at 1552.5 MHz vs. GPS at 1575.42 MHz

Original Roll-out Plan: Phase $0 \rightarrow$ Phase $1 \rightarrow$ Phase 2

The license for the LTE downlink in the assigned frequency range had been officially granted. Already Phase 0 caused problems in various GPS applications, including MIL applications. After the indication of problems NPEF investigated all 3 phases in lab environment. Conclusion: the LTE base stations in the frequency range 1550.2 to 1555.2 MHz had to be switched off.

Based on this background, the GPS innovation alliance pushed the criterion

"C/N0 degradation \leq 1 dB in the presence of a defined AWGN interferer" as neutral criterion in the ETSI standardization for GNSS, without disclosing further receiver performance details on e.g. military applications. The inputs have been regarded in EN 303 413.

Coexistence Case #4:

Co-Location under FCC \rightarrow recommended Practice for Risk Assessments

- The co-location test requirement addresses the simultanous operation of two or more transmitters in one device. The simultanous operation of the intentional transmitters can cause intermodulation.
- The negative effect of intermodulation are additional spurious emissions.
- The co-location test procedure is required to show evidence, that the additional spurious caused by intermodulation are also within the spurious emission limits.

The co-location test is required, independent from the signal technology

- Procedure (example for 2 transmitters A +B):
 - 1) spurious emission test of TX A only \rightarrow keep the limit
 - 2) spurious emission test of TX B only \rightarrow keep the limit
 - spurious emission test of the combination TX A + TX B → keep the limit additional spurious may occur due intermodulation effect (non-linear operation of amplifiers)

"Blocking Test" by different Standards

The different standards do not follow a common base line.

From

very simple settings with fixed blocking level and CW signal

via CW signal with level adjustement

to

the full set of scenarios with variation of signal type and with level adjustement.

83

Level ajustment of blocking signal levels for 5 GHz RLAN in standard EN 301 893

Example for modulated Interferer: Blocking Test in EN 303 340

Digital Terrestrial TV Broadcast Receivers

Example for DVB-T

Blocking Test in EN 303 340: Challenge: Check of Receiver Performance

Interferer Scednario + Check of Receiver Performance provided by R&S BTC

Blocking Test in EN 303 340:

Challenge: Check of Receiver Performance

The prokect department of R&S Asia in Singapur has developed a system solution for the test of TV sets.

Working with Save-and-Recall Files (.savrcl Files)

Standard Scenario Interferer type

Type of wanted signal

For Digital TV the interferer signal level has to be increased until the receiver provides with just sufficient performance.

The standard prescribes a minimum period of 15 seconds for the interval between two errors.

This leads to observation times of 30 seconds per interferer level value. The video must be seamless to avoid synchronisation errors of the device under test.

A.savrcl, hA.savrcl, athA.savrcl PathA.savrcl PathA.savrcl bA.savrcl

vrcl

rcl

- _____U3340 Blocking DVBT2 7Mhz איי 🔍
- EN303340 Blocking DVBT2 8Mhz BTC PathA.so.
- EN303340 Overloading1 DVBT 7Mhz BTC PathA.savrc.
- EN303340 Overloading1 DVBT 8Mhz BTC PathA.savrcl
- EN303340 Overloading1 DVBT2 7Mhz BTC PathA.savrcl
- EN303340 Overloading1 DVBT2 8Mhz BTC PathA.savrcl
- EN303340 Overloading2&3 DVBT 7Mz BTC PathA.savrcl
- EN303340 Overloading2&3 DVBT 8Mz BTC PathA.savrcl
- EN303340 Overloading2&3 DVBT2 7Mhz BTC PathA.savr
- EN303340 Overloading2&3 DVBT2 8Mhz BTC PathA r
- EN303340 Sensitivity DVBT BW7Mhz 198_5Mb- 1
 - TNIR03340 Sensitivity DVBT BW7MF

Wireless Coexistence – Risk Assessment Combining, selecting, adjusting scenarios important part of Risk Assessment

90

Tools for Field Strength and Power Discussion

Be careful: Most tools allow the evaluation of power and fieldstrength conditions for "RMS". For active RF signal paths you need to consider the Peak-to-Average Power Ratio PAPR (→Crest Factor). Typical PAPR values can be derived from technical studies. A PAPR of 8 dB is often used for LTE signal types.

ROHDE&SCHWARZ

Field Strength and Power Discussion

Scenario Separation distance. Interferer signal EIRP at origin. Expected fieldstrength of the "unwanted signal" at the UUT (victim). Simulation by immunity system Expected field strength at UUT. Distance between UUT and antenna for the transmission of the unwanted signal. Antenna gain.

RMS power level Calculation of the transmit power level of the unwanted signal at the antenna input.

Be careful:

Most tools allow the evaluation of power and fieldstrength conditions for "RMS". For active RF signal paths you need to consider the Peak-to-Average Power Ratio PAPR (→Crest Factor). Typical PAPR values can be derived from technical studies. A PAPR of 8 dB is often used for LTE signal types.

More details follow later.

ROHDE&SCHWARZ

Additional Factors

- number of subcarriers
- Bandwidth correction e.g. in case of transient interferers.

Crest Factor, PAPR Typical for LTE: 8 dB

Tools for Field Strength and Power Discussion

R&S Field Strength and Power Estimator		🚸 R&S Field Strength and Power Estimator 🛛 🖃 🕅 🛣	🚸 R&S Field Strength and Power Estimator 🛛 📼 🛛 🛣			
File Help		File Help	File Help			
Persistant Data		Persistant Data	Persistant Data			
Frequency: f = 2.500k MHz	-	Frequency: f = 2.500k MHz -	Frequency: f = 2.500k MHz -			
Antenna Gain Transmitter: Gt = 0.000 dBi	-	Antenna Gain Transmitter: G = 5.000 dBi	Antenna Gain Transmitter: Gr = 5 dBi -			
Antenna Gain Receiver: G - 0.000 dBi			Antenna Cain Paceiver: C = 0.000 dPi			
Distance: R = 1 ft	-	Distance: R = 3.000 m -	Distance: R = 3.000 m -			
Transmitter Power		Transmitter Power	Transmitter Power			
Transmitted Power: Ptx = 20.000 dBm	-	Transmitted Power: Ptx = 34.863 dBm -	Transmitted Power: Ptx = 3.064 W -			
Receiver Power Pn = -10.087 dBm	-	Receiver Power Px = -10.086 dBm ~	Receiver Power Pa = -10.086 dBm -			
Field Strength		Field Strength	Field Strength			
Electric Field Strength: E = 5.683 V/m	~	Electric Field Strength: E = 5.683 V/m -	Electric Field Strength: E = 5.683 V/m ~			
Magnetic Field Strength: H = 15.074m A/m	-	Magnetic Field Strength: H = 15.075m A/m -	Magnetic Field Strength: H = 15.075m A/m -			
Power Flux Density: S = 85.656m W/m ²	-	Power Flux Density: S = 85.669m W/m ² -	Power Flux Density: S = 85.669m W/m ² +			
1 ft separation. EIRP (unwanted)		Keep the field strength. Put in the	Required power for RMS: 3 Watt.			

Simulation by immunity system

1 ft separation. EIRP (unwanted 20 dBm at 2.5 GHz Keep the field strength. Put in the setup parameter, e.g. 3 m. Gain 5 dBi.

Required power for RMS: 3 Watt. Additional head room to cope with the PAPR of the unwanted signal: 8 dB \rightarrow 19.3 Watt (net). Losses of 1.5 dB? \rightarrow 27.3 Watt \rightarrow select 30 W.

RMS power level

Example

Fieldstrength and Power Discussion R&S Field Strength and Power Estimator Application Note 1MA85

ersistant Data	Estimator Formulas
Frequency: f = 1.000 GHz ~ Intenna Gain Transmitter: G ₁ = 0.000 dBi ~ Antenna Gain Receiver: G _r = 0.000 dBi ~ Distance: R = 10.000 m ~	$= \frac{E^2}{Z_0} = Z_0 \cdot H^2$ G. Antenna Gain Transmitter G. Antenna Gain Receiver
Transmitter Power: P _{ix} = 20.000 W ~	$= \frac{G \cdot \lambda^2}{4\pi}$ $= 3 \cdot 10^8 \frac{m}{2}$ R Distance P _{to} Transmitted Power P _{to} Receiver Power E Electric Field Strength
eceiver Power Receiver Power: P _{rx} = 113.829µ W -	= $120\pi = 377\Omega$ = $120\pi = 377$ = $120\pi = $
eld Strength E 2.449 V/m ~ Magnetic Field Strength: H = 6.497m A/m ~ Power Flux Density: S = 15.915m W/m² ~	= Distance R _X - T _X ^{cs} Speed of light in vacuum ^π The mathematical constant ^λ Wayelength As Effective Area

99

Application Note 1MA85

Field Strength and Power Estimator Application Note

PETSOLATE LIGRA		Estimator Formulas		
Frequency: Frequenc	1.000 GHz 0.000 dBi 0.000 GBi 10.000 m 20.000 W 113.825µ W 113.825µ W 5.440 Vm 6.457m Am 5.915m Vm	$\label{eq:constraints} \hline \begin{array}{c} \mbox{training} \\ \hline \mbox{training} \\ - \frac{E_{1}^{2}}{Z_{0}} - \frac{E_{0}}{Z_{0}} + \frac{E_{1}}{R_{0}} & - \frac{E_{1}}{R_{0}} + \frac{E_{1}}{R_{0}} - \frac{E_{1}}{R_{0}} & - \frac{E_{1}}{R_{0}} - \frac{E_{1}}{R_{0}} & - \frac{E_{1}}{R_{0}} - $		

Determining the field strength from transmitted power is not an easy job. Various, quite complicated formulas have to be evaluated correctly. This application note explains how to calculate electric and magnetic field strength, and power flux density. A program

associated with this application note helps with the calculation and converts Watts to mW and dBm, V/m to µV/m and dBµV/m as well as A/m to µA/m and dBµA/m. Additional applications are calculation of propagation loss or antenna factor. Smartphone ver-

Note:

Please find the most up-to-date document on our homepage http://www.rohde-schwarz.com/appnote/ 1MA85.

This document is complemented by software. The software may be updated even if the version of the document remains unchanged

sions of the application software are also available.

Abbreviations

- ACS Adjacent Channel Selectivity
- AFA Adaptive Frequency Agility
- AWGN Additive White Gaussian Noise
- CCA Clear Channel Assessment
- DFS Dynamic Frequency Selection
- LBT Listen Before Talk

Contact Details

Rohde & Schwarz International GmbH GF-MI Christian Reimer Muehldorfstr. 15 81671 Munich Germany

christian.reimer@rohde-schwarz.com

Office:	+49 89 4129 13921
Fax:	+49 89 4129 63921
Mobile:	+49 171 87 94 436

ROHDE&SCHWARZ

102