
SIGNAL INTEGRITY EYE TEST

MEASURING AT THE TRANSMITTER

View the transmitter's influence on the eye diagram

PARAMETRIC

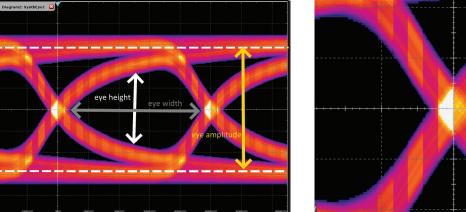
400 mV

- ► Transmitter eve opening controlled by amplitude & rise time
- ► Slew-rate, driver imbalance, intra-pair skew contribute to EMI

Diagram1: SynthEye1

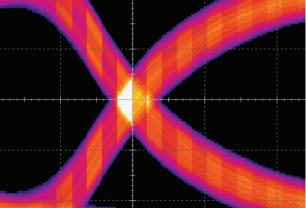
► Typical measurements: eye height, eye width, amplitude, rise time, slew rate, mask testing

JITTER

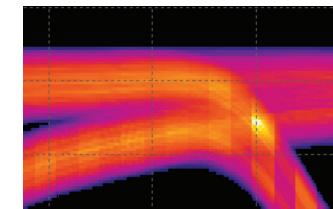

- ► Transmitter jitter components include random jitter (RJ) & periodic jitter (PJ)
- ► RJ is mostly influenced by clock
- ► PJ mostly influenced by power rail and clock
- ► Typical measurements: total jitter, random jitter, and deterministic jitter

NOISE

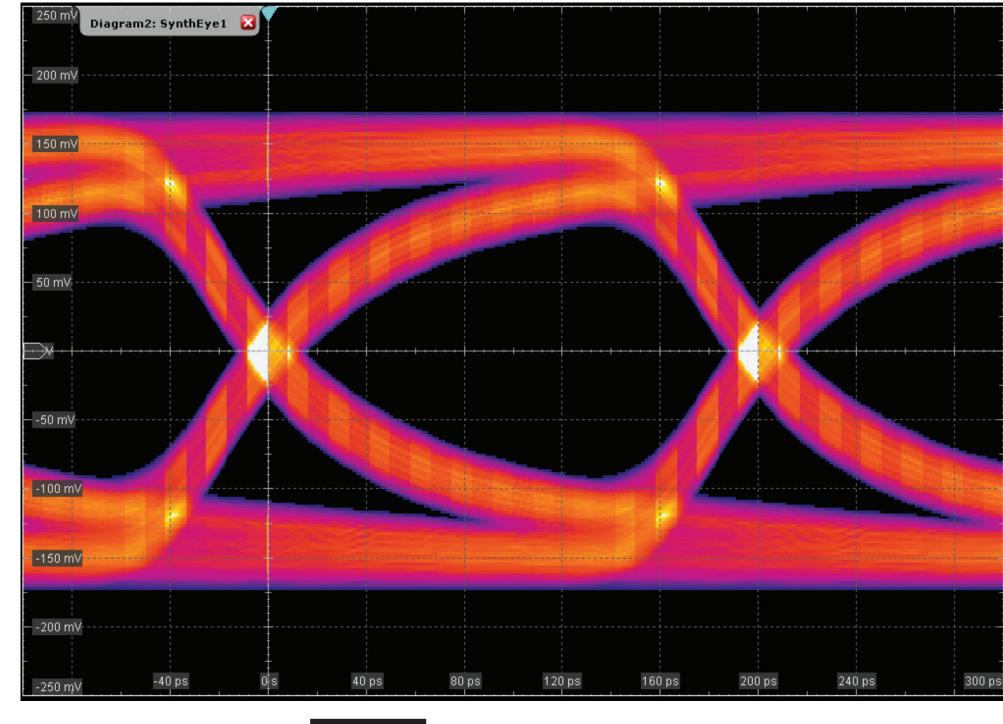
- ► Observed at the top and bottom of the eye diagram
- ► Noise at the transmitter is fundamentally power rail noise
- ► Typical measurements: total noise, random noise, deterministic noise


MEASURING AT THE RECEIVER

View the system's influence on the eye diagram


PARAMETRIC

- ► The channel has frequency dependent losses which reduce the eye height and reduce the eye width
- ► Typical measurements: eye height, eye width, amplitude, rise time


JITTER

- ► The channel's frequency dependent losses cause data-dependent jitter. Additional jitter sources include crosstalk and EMI
- ► Typical measurements: data-dependent jitter, total jitter, random jitter, deterministic jitter, and crosstalk

NOISE / INTERFERENCE

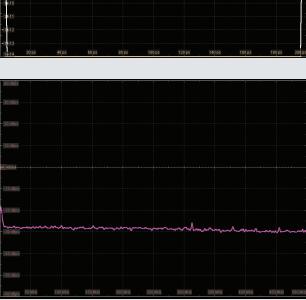
- ► The channel is susceptible to noise and interference which can be seen at the top and bottom of the eye diagram. The two most common sources of noise and interference are EMI and crosstalk
- Typical measurements: total noise, random noise, deterministic noise, data-dependent noise, EMI FFT analysis

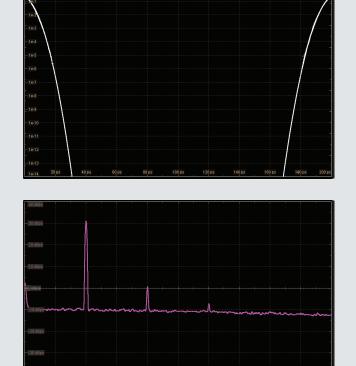
......

......

COMMON CHALLENGES

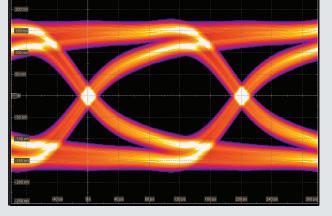
AT THE TRANSMITTER

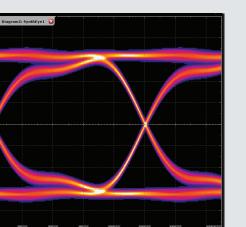

RANDOM JITTER

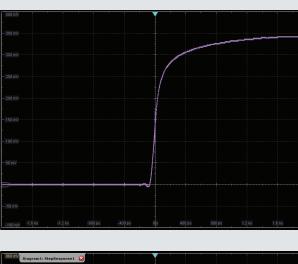

Phase noise can be manifested as RJ of the data signal. The bathtub curve shows the influence of RJ over time

PERIODIC JITTER

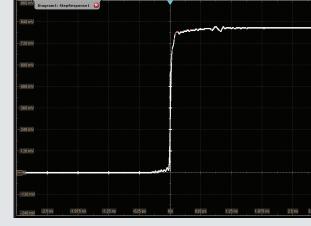
Periodic noise sources such as power supply coupling, can add high amplitude periodic jitter. PJ spectrum helps visualize specific jitter tones

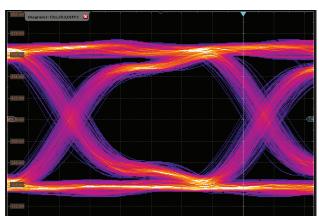

AT THE RECEIVER


LONG CHANNEL


The longer the channel, the higher the signal attenuation due to the dielectric absorption of the channel material

REFLECTIONS

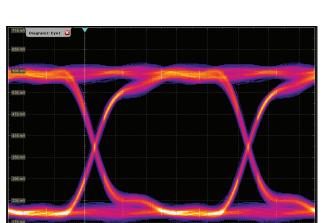

Ringing or overshoot can occur from PCB layout, probing issues or other impedance discontinuities


COMMON CHALLENGES

HOW TO GENERATE AN EYE DIAGRAM

ON AN OSCILLOSCOPE

There are three primary ways of capturing an eye diagram. Each of the methods has benefits and trade-offs

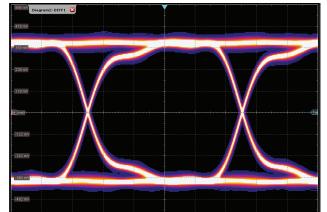

TRIGGERED EYE

In this setup there is a system clock used to trigger the oscilloscope. Each acquisition captures one eye diagram and the oscilloscope overlays them

Benefit: High UI count, see transient events, simple setup

Trade-off: Significant trigger jitter, not consecutive UI, includes time-base wander, live signals only

Requirement: Need to have external clock, or alternatively could trigger directly on data with compromised results


DIGITAL CLOCK RECOVERY

Here the clock is embedded in the data signal and is extracted using hardware or software clock recovery. Each acquisition captures one unit interval and the oscilloscope overlays them

Benefit: Highest UI count, no trigger jitter, see transient events, enables higher layer protocol triggering

Trade-off: Not consecutive UI, live signals only

Requirement: Oscilloscope clock data recovery option, minimum pattern duration for PLL lock

SINGLE ACQUISITION

A single acquisition is captured and the oscilloscope uses software clock recovery to identify each unit interval and overlay them into an eye diagram

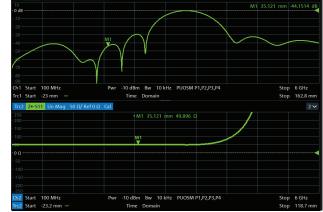
Benefit: Consecutive UI, No trigger jitter, off-line processing, facilitates instrument correlations

Trade-off: Lowest UI count, no transient events

Requirement: Oscilloscope software clock recovery and analysis options

ON A VECTOR NETWORK ANAYLYZER

A VNA can translate measured s-parameters into an eye diagram of the channel

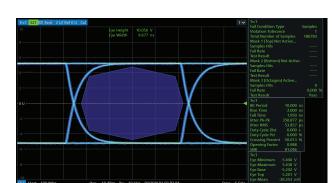

MEASURE S-PARAMETERS

In this setup the VNA measures the complete set of s-parameters of the channel

Benefit: Insight into channel behavior such as crosstalk or frequency dependent attenuation

Recommendation: Measurement accuracy can be improved using de-embedding

Requirement: VNA frequency range covers data rate of the channel. Calibration procedure to establish measurement plane at the device under test


CALCULATE TIME DOMAIN

Using an inverse FFT function, modern VNAs generate equivalent time-domain response

delay)

Benefit: Observe behavior in **Recommendation**: As time-domain (reflections) and your channel length goes measure propagation (group up, increase the number frequency data points for longer time-domain capture

Requirement: VNA time domain option, DC value extrapolated from s-parameters

DISPLAY EYE DIAGRAM

Add the time-domain response to a test pattern to simulate an eye diagram

Benefit: Evaluate channel performance under varying conditions such as jitter, noise and equalization

Recommendation: Add a mask for protocol specific compliance testing

Requirement: VNA eye diagram

ROHDE & SCHWARZ SIGNAL INTEGRITY SOLUTIONS

R&S®RTP High-performance Oscilloscope

OSCILLOSCOPES

- ► High-precision digital trigger without bandwidth limitations ► Real-time de-embedding for
- triggering and fast acquisition

VECTOR NETWORK ANALYZERS R&S®ZNA Vector Network Analyzer

- ► Efficient time domain analysis with
- ► Signal integrity at a glance with eye diagrams
 - enhanced resolution

SIGNAL & SPECTRUM ANALYZERS R&S®FSW Signal and Spectrum Analyzer

- Detection of extremely short or frequency agile signals
- ► Flexible analysis tools for easy EMI troubleshooting

DC POWER SUPPLIES R&S®NGL200 Power Supply Series

- ► Fast load regulation with minimal ripple
- ► Multi-purpose while operating as source and sink

ROHDE&SCHWARZ