Generation of Test Signals acc. ISO 14708 for Testing of Cardiac Pacemakers

Application Note

Products:

| R&S®SMA100A | R&S®SML |
| R&S®SMF100A | R&S®SMT |
| R&S®SML, R&S®SMT, and R&S®SMIQ |

This application note describes how to generate test signals with Rohde & Schwarz signal generators of the R&S® SMx family (R&S®SMA100A, R&S®SMF100A, R&S®SML, R&S®SMT, and R&S®SMIQ) to perform interference testing on implantable medical devices using a small application software.
Table of Contents

1 Overview ... 4
2 Hardware and Software Requirements ... 5
3 Test Setup ... 6
4 Running the Test Scenario .. 8
 4.1 Test Scenario TC 27.2 TS1 ... 10
 4.2 Test Scenario TC 27.2 TS2 ... 11
 4.3 Test Scenario TC 27.3 TS ... 12
 4.4 Test Scenario TC 27.4 TS ... 14
5 Literature .. 16
6 Ordering Information .. 16
1 Overview

The medical advances in technology have allowed many patients to live a longer lifespan, for example by the use of active implantable medical devices like cardiac pacemakers for patients with problems of irregular heart beats, or patients that suffer from heart attacks frequently.

The technological world has improved our lives with many electronic devices that might cause interference and malfunction of devices that are susceptible to such interferences. Therefore, various tests need to be conducted on active implantable medical devices to check their susceptibility to electrical influences due to external electromagnetic fields.

This application software will generate test signals according to the ISO 14708-2:2005 [1] standard, Chapter 27.2 – 27.4, using Rohde & Schwarz signal generators R&S®SMA100A or R&S®SMF100A. The software is also compatible with Rohde & Schwarz signal generators R&S®SML, R&S®SMT, and R&S®SMIQ, which are no longer available for orders.

Other Rohde & Schwarz signal generators such as R&S®SMB100A, R&S®SMC100A, R&S®SMBV100A, R&S®SMJ100A, and R&S®SMU200A, can be used with the limitation of the LF Generator signal level being clipped on test scenario TC 27.3 TS.
2 Hardware and Software Requirements

PC hardware requirements

- **CPU**: Pentium 1 GHz or better
- **RAM**: 1 GB or more
- **Monitor**: SVGA colour monitor
- **Data Connection Interface**: GPIB or LAN port

PC software requirements

- Microsoft 32-bit operating system (Windows 2000/XP)
- Visa Library 4.0 or higher

Instrument basic requirements

LF Generator
- **Frequency Range**: from 16.6 Hz to 167 kHz
- **Amplitude Range**: from 0 V to 7 V (U_{pp})

AM Modulator
- **Carrier Frequency**: 500 kHz
- **Modulating Frequency**: 130 Hz
- **Amplitude**: 2 V (U_{pp})
- **Modulating Index**: 95%
3 Test Setup

The test setup for the cardiac pacemaker (implantable pulse generator) according to ISO 14708-2:2005 is shown in Figure 1.

The implantable pulse generator is connected to the tissue equivalent interface for testing. The inhibition generator is used in test scenario TC 27.4 TS and it provides a synchronization signal for the implantable pulse generator, allowing the pulse signal from the implantable pulse generator to occur synchronously with the inhibition generator signals (see ISO 14708-2:2005 [1] standard, Chapter 6.1.2). The test signal generator provides the interference to the implantable pulse generator and the results are captured on two different oscilloscopes.

The application software simulates the test signal generator using a R&S®SMx signal generator.
The instrument connection is set up as follows:

1. Connect a laptop/PC GPIB or LAN port with the signal generator GPIB or LAN port.

2. Connect the LF signal output port of the signal generator to port C of the test bed for the following tests:
 - TC 27.2 TS1
 - TC 27.3 TS
 - TC 27.4 TS

3. Connect the RF signal output port of the signal generator to port C of the test bed for the following test:
 - TC 27.2 TS2

![Diagram of hardware connection test signal generator setup.](image)

Figure 2: Hardware connection test signal generator setup.
4 Running the Test Scenario

Copy and unzip the files into the laptop/PC and launch ImplantRadiation.exe.

The Implant Radiation software user interface will appear as shown in Figure 3.

![Figure 3: Implant Radiation software user interface](image)

Before starting any tests, click on the radio button below to acknowledge that the terms and conditions for executing this software are agreed upon. A Setup button will appear after the acknowledgement.

If a GPIB port is used for controlling the signal generator, ensure that the GPIB address of the signal generator is set correctly for this particular test software, and click on the Setup button.

If a LAN port is used for controlling the signal generator, click on the radio button Use LAN Port and input the address of the LAN port in the text box below the radio button. The format should be:

```
TCP/IP0::ipaddr::instr0::INSTR
```

where `ipaddr` can be either the address of the LAN port or the hostname of the signal generator.
The program will initialize the signal generator, and a message box will show the name and serial number of the signal generator that is currently used for testing. An *Initialisation Complete* text will appear and the buttons to select for the various test scenarios will appear as shown in Figure 4.

Figure 4: Initialisation complete.
4.1 Test Scenario TC 27.2 TS1

Select TC 27.2 TS1 in order to start the test scenario. Make sure that the LF Output port is used to send the signal to the DUT. The text TC 27.2 Test Signal 1 Active Loop will appear to indicate that the test signal is being generated by the signal generator. The test signal will be a continuous active loop signal. In order to stop the test signal, the SetUp button needs to be pushed.

The test signal for TC 27.2 TS1 will be generated as:

- Sinusoidal signal of 1 V (peak-to-peak).
- Frequency swept from 16.6 Hz to 20 kHz at rate of one decade per minute.
- Continuous looping sweep in frequency.

Figure 5: Running TC 27.2 TS1 scenario.

Figure 6: Flow diagram of TC 27.2 TS1 test signal.
4.2 Test Scenario TC 27.2 TS2

Select TC 27.2 TS2 in order to start the test scenario. Make sure that the RF Output port is used to send the signal to the DUT. The text TC 27.2 Test Signal 2 Active Loop will appear to indicate that the test signal is being generated by the signal generator. The test signal will be a continuous active loop signal. In order to stop the test signal, the SetUp button needs to be pushed.

![Image of test scenario selection]

Figure 7: Running TC 27.2 TS2 scenario.

The test signal for TC 27.2 TS2 will be generated as:

- Sinusoidal carrier signal of frequency at 500 kHz.
- Continuous amplitude modulation at 130 Hz.
- Maximum peak-to-peak voltage of modulated signal at 2 V.
- Modulation index of 95%.

![Image of test signal diagram]

Figure 8: TC 27.2 TS2 test signal.
4.3 Test Scenario TC 27.3 TS

Select TC 27.3 TS in order to start the test scenario. Make sure that the LF Output port is used to send the signal to the DUT. The text TC 27.3 Test Signal Running will appear to indicate that the test signal is being generated by the signal generator. The test signal is not a continuous active loop signal. In order to stop the test signal before it completes, the SetUp button needs to be pushed. Alternatively the QUIT button can be pushed to terminate the program.

![Diagram showing TC 27.3 TS scenario.

Figure 9: Running TC 27.3 TS scenario.

The test signal for TC 27.3 TS will be generated as:

- Frequency swept over 16.6 Hz to 140 kHz at rate of one decade per minute.
- Sinusoidal signal of 1 V (peak-to-peak) from 16.6 Hz to 20 kHz.
- Dwell time at 5 s.
- Amplitude increase by factor of m, with m = (current frequency/20 kHz) from 20 kHz to 140 kHz.
Table 1 shows the maximum LF output level for the signal generators that can be used for test scenario TC 27.3 TS. Signal generators that cannot generate a LF output level up to 7 V (Up-p) will have the signal clipped at the maximum LF output level that it can generate.

<table>
<thead>
<tr>
<th>Signal Generator</th>
<th>Maximum LF Output Level V (Up-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA100A</td>
<td>8.0</td>
</tr>
<tr>
<td>SMF100A</td>
<td>12.0</td>
</tr>
<tr>
<td>SML</td>
<td>8.0</td>
</tr>
<tr>
<td>SMT</td>
<td>8.0</td>
</tr>
<tr>
<td>SMIQ</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Table 1: Signal generator maximum LF output level.

Figure 10: Flow diagram of TC 27.3 TS test signal
4.4 Test Scenario TC 27.4 TS

Select TC 27.4 TS in order to start the test scenario. Make sure that the LF Output port is used to send the signal to the DUT. The text TC 27.4 Test Signal Running will appear to indicate that the test signal is being generated by the signal generator. The test signal is not a continuous active loop signal. In order to stop the test signal before it completes, the SetUp button needs to be pushed. Alternatively the QUIT button can be pushed to terminate the program.

![Image of test scenario software interface]

Figure 11: Running TC 27.4 TS scenario.

The test signal for TC 27.4 TS will be generated as:

- Frequency swept over 16.6 Hz to 167 kHz at four distinct and well spaced frequencies per decade

 \[
 \begin{align*}
 \text{Frequencies:} & \quad 16.6 \text{ Hz}, 41.5 \text{ Hz}, 83 \text{ Hz}, 124.5 \text{ Hz}, \\
 & \quad 167 \text{ Hz}, 417.5 \text{ Hz}, 835 \text{ Hz}, 12525 \text{ kHz}, \\
 & \quad 1.67 \text{ kHz}, 4.175 \text{ kHz}, 8.35 \text{ kHz}, 12.525 \text{ kHz}, \\
 & \quad 16.7 \text{ kHz}, 41.75 \text{ kHz}, 83.5 \text{ kHz}, 125.25 \text{ kHz}, \\
 & \quad 167 \text{ kHz}
 \end{align*}
 \]

- Continuous looping sweep in frequency.
- Sinusoidal signal of amplitude gradually increasing from 0 V to 1 V (peak-to-peak) with 800 ms interval at 0.1 V spacing per increment.
Figure 12: Flow diagram of TC 27.4 TS test signal

- 0 V (Up-p) 16.6 Hz
- 1 V (Up-p) at 0.1 V interval
- 167 Hz
- Similar settings for 1.67 kHz and 16.7 kHz
- 167 kHz
5 Literature

[1] International Organization for Standardization (ISO); ISO 14708-2:2005
Implants for surgery -- Active implantable medical devices -- Part 2: Cardiac pacemakers

6 Ordering Information

R&S® SMA100A Signal generator base unit 1400.0000.02
R&S® SMB100A Signal generator base unit 1406.6000.02
R&S® SMBV100A Signal generator base unit 1407.6004.02
R&S® SMC100A Signal generator base unit 1411.4002.02
R&S® SMF100A Signal generator base unit 1167.0000.02
R&S® SMJ100A Vector signal generator base unit 1403.4507.02
R&S® SMU200A Vector signal generator base unit 1141.2005.02
About Rohde & Schwarz
Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. Company headquarters are in Munich, Germany.

Regional contact
Europe, Africa, Middle East
+49 1805 12 42 42* or +49 89 4129 137 74
customersupport@rohde-schwarz.com

North America
1-888-TEST-RSA (1-888-837-8772)
customer.support@rsa.rohde-schwarz.com

Latin America
+1-410-910-7988
customersupport.la@rohde-schwarz.com

Asia/Pacific
+65 65 13 04 88
customersupport.asia@rohde-schwarz.com

This application note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.